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2 General Random Variables Chap. 3

Random variables with a continuous range of possible experimental values are
quite common – the velocity of a vehicle traveling along the highway could be one
example. If such a velocity is measured by a digital speedometer, the speedome-
ter’s reading is a discrete random variable. But if we also wish to model the exact
velocity, a continuous random variable is called for. Models involving continuous
random variables can be useful for several reasons. Besides being finer-grained
and possibly more accurate, they allow the use of powerful tools from calculus
and often admit an insightful analysis that would not be possible under a discrete
model.

All of the concepts and methods introduced in Chapter 2, such as expec-
tation, PMFs, and conditioning, have continuous counterparts. Developing and
interpreting these counterparts is the subject of this chapter.

3.1 CONTINUOUS RANDOM VARIABLES AND PDFS

A random variable X is called continuous if its probability law can be described
in terms of a nonnegative function fX , called the probability density function
of X, or PDF for short, which satisfies

P(X ∈ B) =
∫

B

fX(x) dx,

for every subset B of the real line.† In particular, the probability that the value
of X falls within an interval is

P(a ≤ X ≤ b) =
∫ b

a

fX(x) dx,

and can be interpreted as the area under the graph of the PDF (see Fig. 3.1).
For any single value a, we have P(X = a) =

∫ a

a
fX(x) dx = 0. For this reason,

including or excluding the endpoints of an interval has no effect on its probability:

P(a ≤ X ≤ b) = P(a < X < b) = P(a ≤ X < b) = P(a < X ≤ b).

Note that to qualify as a PDF, a function fX must be nonnegative, i.e.,
fX(x) ≥ 0 for every x, and must also satisfy the normalization equation∫ ∞

−∞
fX(x) dx = P(−∞ < X < ∞) = 1.

† The integral
∫

B
fX(x) dx is to be interpreted in the usual calculus/Riemann

sense and we implicitly assume that it is well-defined. For highly unusual functions
and sets, this integral can be harder – or even impossible – to define, but such issues
belong to a more advanced treatment of the subject. In any case, it is comforting
to know that mathematical subtleties of this type do not arise if fX is a piecewise
continuous function with a finite number of points of discontinuity, and B is the union
of a finite or countable number of intervals.
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Sample Space

x 

PDF fX(x)

Event {a < X < b}
a b

Figure 3.1: Illustration of a PDF. The probability that X takes value in an

interval [a, b] is
∫ b

a
fX(x) dx, which is the shaded area in the figure.

Graphically, this means that the entire area under the graph of the PDF must
be equal to 1.

To interpret the PDF, note that for an interval [x, x + δ] with very small
length δ, we have

P
(
[x, x + δ]

)
=

∫ x+δ

x

fX(t) dt ≈ fX(x) · δ,

so we can view fX(x) as the “probability mass per unit length” near x (cf.
Fig. 3.2). It is important to realize that even though a PDF is used to calculate
event probabilities, fX(x) is not the probability of any particular event. In
particular, it is not restricted to be less than or equal to one.

x 

PDF fX(x )

δ

x  + δ 

Figure 3.2: Interpretation of the PDF
fX(x) as “probability mass per unit length”
around x. If δ is very small, the prob-
ability that X takes value in the inter-
val [x, x + δ] is the shaded area in the
figure, which is approximately equal to
fX(x) · δ.

Example 3.1. Continuous Uniform Random Variable. A gambler spins
a wheel of fortune, continuously calibrated between 0 and 1, and observes the
resulting number. Assuming that all subintervals of [0,1] of the same length are
equally likely, this experiment can be modeled in terms a random variable X with
PDF

fX(x) =
{

c if 0 ≤ x ≤ 1,
0 otherwise,
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for some constant c. This constant can be determined by using the normalization
property

1 =

∫ ∞

−∞
fX(x) dx =

∫ 1

0

c dx = c

∫ 1

0

dx = c

so that c = 1.
More generally, we can consider a random variable X that takes values in

an interval [a, b], and again assume that all subintervals of the same length are
equally likely. We refer to this type of random variable as uniform or uniformly
distributed. Its PDF has the form

fX(x) =
{

c if a ≤ x ≤ b,
0 otherwise,

where c is a constant. This is the continuous analog of the discrete uniform random
variable discussed in Chapter 2. For fX to satisfy the normalization property, we
must have (cf. Fig. 3.3)

1 =

∫ b

a

c dx = c

∫ b

a

dx = c(b − a),

so that

c =
1

b − a
.

x 

PDF fX(x)

a b

1

b - a 
Figure 3.3: The PDF of a uniform
random variable.

Note that the probability P(X ∈ I) that X takes value in a set I is

P(X ∈ I) =

∫
[a,b]∩I

1

b − a
dx =

1

b − a

∫
[a,b]∩I

dx =
length of [a, b] ∩ I

length of [a, b]
.

The uniform random variable bears a relation to the discrete uniform law, which
involves a sample space with a finite number of equally likely outcomes. The dif-
ference is that to obtain the probability of various events, we must now calculate
the “length” of various subsets of the real line instead of counting the number of
outcomes contained in various events.

Example 3.2. Piecewise Constant PDF. Alvin’s driving time to work is
between 15 and 20 minutes if the day is sunny, and between 20 and 25 minutes if
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the day is rainy, with all times being equally likely in each case. Assume that a day
is sunny with probability 2/3 and rainy with probability 1/3. What is the PDF of
the driving time, viewed as a random variable X?

We interpret the statement that “all times are equally likely” in the sunny
and the rainy cases, to mean that the PDF of X is constant in each of the intervals
[15, 20] and [20, 25]. Furthermore, since these two intervals contain all possible
driving times, the PDF should be zero everywhere else:

fX(x) =

{
c1 if 15 ≤ x < 20,
c2 if 20 ≤ x ≤ 25,
0 otherwise,

where c1 and c2 are some constants. We can determine these constants by using
the given probabilities of a sunny and of a rainy day:

2

3
= P(sunny day) =

∫ 20

15

fX(x) dx =

∫ 20

15

c1 dx = 5c1,

1

3
= P(rainy day) =

∫ 25

20

fX(x) dx =

∫ 25

20

c2 dx = 5c2,

so that

c1 =
2

15
, c2 =

1

15
.

Generalizing this example, consider a random variable X whose PDF has the
piecewise constant form

fX(x) =
{

ci if ai ≤ x < ai+1, i = 1, 2, . . . , n − 1,
0 otherwise,

where a1, a2, . . . , an are some scalars with ai < ai+1 for all i, and c1, c2, . . . , cn are
some nonnegative constants (cf. Fig. 3.4). The constants ci may be determined by
additional problem data, as in the case of the preceding driving context. Generally,
the ci must be such that the normalization property holds:

1 =

∫ an

a1

fX(x) dx =

n−1∑
i=1

∫ ai+1

ai

ci dx =

n−1∑
i=1

ci(ai+1 − ai).

x 

PDF fX(x)

a 1 a 2 a 3 a 4

c 1
c 2

c 3

Figure 3.4: A piecewise constant PDF involving three intervals.
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Example 3.3. A PDF can be arbitrarily large. Consider a random variable
X with PDF

fX(x) =

{
1

2
√

x
if 0 < x ≤ 1,

0 otherwise.

Even though fX(x) becomes infinitely large as x approaches zero, this is still a valid
PDF, because ∫ ∞

−∞
fX(x) dx =

∫ 1

0

1

2
√

x
dx =

√
x

∣∣∣1
0

= 1.

Summary of PDF Properties

Let X be a continuous random variable with PDF fX .

• fX(x) ≥ 0 for all x.

•
∫ ∞
−∞ fX(x) dx = 1.

• If δ is very small, then P
(
[x, x + δ]

)
≈ fX(x) · δ.

• For any subset B of the real line,

P(X ∈ B) =
∫

B

fX(x) dx.

Expectation

The expected value or mean of a continuous random variable X is defined
by†

E[X] =
∫ ∞

−∞
xfX(x) dx.

† One has to deal with the possibility that the integral
∫ ∞
−∞ xfX(x) dx is infi-

nite or undefined. More concretely, we will say that the expectation is well-defined if∫ ∞
−∞ |x|fX(x) dx < ∞. In that case, it is known that the integral

∫ ∞
−∞ xfX(x) dx takes

a finite and unambiguous value.
For an example where the expectation is not well-defined, consider a random vari-

able X with PDF fX(x) = c/(1 + x2), where c is a constant chosen to enforce the nor-
malization condition. The expression |x|fX(x) is approximately the same as 1/|x| when
|x| is large. Using the fact

∫ ∞
1

(1/x) dx = ∞, one can show that
∫ ∞
−∞ |x|fX(x) dx = ∞.

Thus, E[X] is left undefined, despite the symmetry of the PDF around zero.
Throughout this book, in lack of an indication to the contrary, we implicitly

assume that the expected value of the random variables of interest is well-defined.
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This is similar to the discrete case except that the PMF is replaced by the
PDF, and summation is replaced by integration. As in Chapter 2, E[X] can be
interpreted as the “center of gravity” of the probability law and, also, as the
anticipated average value of X in a large number of independent repetitions of
the experiment. Its mathematical properties are similar to the discrete case –
after all, an integral is just a limiting form of a sum.

If X is a continuous random variable with given PDF, any real-valued
function Y = g(X) of X is also a random variable. Note that Y can be a
continuous random variable: for example, consider the trivial case where Y =
g(X) = X. But Y can also turn out to be discrete. For example, suppose that
g(x) = 1 for x > 0, and g(x) = 0, otherwise. Then Y = g(X) is a discrete
random variable. In either case, the mean of g(X) satisfies the expected value
rule

E
[
g(X)

]
=

∫ ∞

−∞
g(x)fX(x) dx,

in complete analogy with the discrete case.
The nth moment of a continuous random variable X is defined as E[Xn],

the expected value of the random variable Xn. The variance, denoted by
var(X), is defined as the expected value of the random variable

(
X − E[X]

)2.
We now summarize this discussion and list a number of additional facts

that are practically identical to their discrete counterparts.

Expectation of a Continuous Random Variable and its Properties

Let X be a continuous random variable with PDF fX .

• The expectation of X is defined by

E[X] =
∫ ∞

−∞
xfX(x) dx.

• The expected value rule for a function g(X) has the form

E
[
g(X)

]
=

∫ ∞

−∞
g(x)fX(x) dx.

• The variance of X is defined by

var(X) = E
[(

X − E[X]
)2] =

∫ ∞

−∞

(
x − E[X]

)2
fX(x) dx.
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• We have
0 ≤ var(X) = E[X2] −

(
E[X]

)2
.

• If Y = aX + b, where a and b are given scalars, then

E[Y ] = aE[X] + b, var(Y ) = a2var(X).

Example 3.4. Mean and Variance of the Uniform Random Variable.
Consider the case of a uniform PDF over an interval [a, b], as in Example 3.1. We
have

E[X] =

∫ ∞

−∞
xfX(x) dx

=

∫ b

a

x · 1

b − a
dx

=
1

b − a
· 1

2
x2

∣∣∣b

a

=
1

b − a
· b2 − a2

2

=
a + b

2
,

as one expects based on the symmetry of the PDF around (a + b)/2.
To obtain the variance, we first calculate the second moment. We have

E[X2] =

∫ b

a

x2

b − a
dx

=
1

b − a

∫ b

a

x2 dx

=
1

b − a
· 1

3
x3

∣∣∣b

a

=
b3 − a3

3(b − a)

=
a2 + ab + b2

3
.

Thus, the variance is obtained as

var(X) = E[X2] −
(
E[X]

)2
=

a2 + ab + b2

3
− (a + b)2

4
=

(b − a)2

12
,

after some calculation.
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Suppose now that [a, b] = [0, 1], and consider the function g(x) = 1 if x ≤ 1/3,
and g(x) = 2 if x > 1/3. The random variable Y = g(X) is a discrete one with
PMF pY (1) = P(X ≤ 1/3) = 1/3, pY (2) = 1 − pY (1) = 2/3. Thus,

E[Y ] =
1

3
· 1 +

2

3
· 2 =

5

3
.

The same result could be obtained using the expected value rule:

E[Y ] =

∫ 1

0

g(x)fX(x) dx =

∫ 1/3

0

dx +

∫ 1

1/3

2 dx =
5

3
.

Exponential Random Variable

An exponential random variable has a PDF of the form

fX(x) =
{

λe−λx if x ≥ 0,
0 otherwise,

where λ is a positive parameter characterizing the PDF (see Fig. 3.5). This is a
legitimate PDF because∫ ∞

−∞
fX(x) dx =

∫ ∞

0

λe−λx dx = −e−λx

∣∣∣∞
0

= 1.

Note that the probability that X exceeds a certain value falls exponentially.
Indeed, for any a ≥ 0, we have

P(X ≥ a) =
∫ ∞

a

λe−λx dx = −e−λx

∣∣∣∞
a

= e−λa.

An exponential random variable can be a very good model for the amount
of time until a piece of equipment breaks down, until a light bulb burns out,
or until an accident occurs. It will play a major role in our study of random
processes in Chapter 5, but for the time being we will simply view it as an
example of a random variable that is fairly tractable analytically.

0 x 

λ

0 x 

λ

Small λ Large λ

Figure 3.5: The PDF λe−λx of an exponential random variable.
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The mean and the variance can be calculated to be

E[X] =
1
λ

, var(X) =
1
λ2

.

These formulas can be verified by straightforward calculation, as we now show.
We have, using integration by parts,

E[X] =
∫ ∞

0

xλe−λx dx

= (−xe−λx)
∣∣∣∞
0

+
∫ ∞

0

e−λx dx

= 0 − e−λx

λ

∣∣∣∣∣
∞

0

=
1
λ

.

Using again integration by parts, the second moment is

E[X2] =
∫ ∞

0

x2λe−λx dx

= (−x2e−λx)
∣∣∣∞
0

+
∫ ∞

0

2xe−λx dx

= 0 +
2
λ
E[X]

=
2
λ2

.

Finally, using the formula var(X) = E[X2] −
(
E[X]

)2, we obtain

var(X) =
2
λ2

− 1
λ2

=
1
λ2

.

Example 3.5. The time until a small meteorite first lands anywhere in the Sahara
desert is modeled as an exponential random variable with a mean of 10 days. The
time is currently midnight. What is the probability that a meteorite first lands
some time between 6am and 6pm of the first day?

Let X be the time elapsed until the event of interest, measured in days.
Then, X is exponential, with mean 1/λ = 10, which yields λ = 1/10. The desired
probability is

P(1/4 ≤ X ≤ 3/4) = P(X ≥ 1/4) − P(X > 3/4) = e−1/40 − e−3/40 = 0.0476,

where we have used the formula P(X ≥ a) = P(X > a) = e−λa.
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Let us also derive an expression for the probability that the time when a
meteorite first lands will be between 6am and 6pm of some day. For the kth day,
this set of times corresponds to the event k − (3/4) ≤ X ≤ k − (1/4). Since these
events are disjoint, the probability of interest is

∞∑
k=1

P
(
k − 3

4
≤ X ≤ k − 1

4

)
=

∞∑
k=1

(
P

(
X ≥ k − 3

4

)
− P

(
X > k − 1

4

))

=

∞∑
k=1

(
e−(4k−3)/40 − e−(4k−1)/40

)
.

We omit the remainder of the calculation, which involves using the geometric series
formula.

3.2 CUMULATIVE DISTRIBUTION FUNCTIONS

We have been dealing with discrete and continuous random variables in a some-
what different manner, using PMFs and PDFs, respectively. It would be desir-
able to describe all kinds of random variables with a single mathematical concept.
This is accomplished by the cumulative distribution function, or CDF for
short. The CDF of a random variable X is denoted by FX and provides the
probability P(X ≤ x). In particular, for every x we have

FX(x) = P(X ≤ x) =




∑
k≤x

pX(k) X: discrete,

∫ x

−∞
fX(t) dt X: continuous.

Loosely speaking, the CDF FX(x) “accumulates” probability “up to” the value x.
Any random variable associated with a given probability model has a CDF,

regardless of whether it is discrete, continuous, or other. This is because {X ≤ x}
is always an event and therefore has a well-defined probability. Figures 3.6 and
3.7 illustrate the CDFs of various discrete and continuous random variables.
From these figures, as well as from the definition, some general properties of the
CDF can be observed.
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PMF pX(x)
1

0 0

1

0 0x1 2 43 1 2 43

px(2) px(2)

CDF FX(x)
PMF pX(x)

x x

x

CDF FX(x)

.
. .

.
. . .

Figure 3.6: CDFs of some discrete random variables. The CDF is related to the
PMF through the formula

FX(x) = P(X ≤ x) =
∑
k≤x

pX(k),

and has a staircase form, with jumps occurring at the values of positive probability
mass. Note that at the points where a jump occurs, the value of FX is the larger
of the two corresponding values (i.e., FX is continuous from the right).

Properties of a CDF

The CDF FX of a random variable X is defined by

FX(x) = P(X ≤ x), for all x,

and has the following properties.

• FX is monotonically nondecreasing:

if x ≤ y, then FX(x) ≤ FX(y).

• FX(x) tends to 0 as x → −∞, and to 1 as x → ∞.

• If X is discrete, then FX has a piecewise constant and staircase-like
form.

• If X is continuous, then FX has a continuously varying form.
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• If X is discrete and takes integer values, the PMF and the CDF can
be obtained from each other by summing or differencing:

FX(k) =
k∑

i=−∞
pX(i),

pX(k) = P(X ≤ k) − P(X ≤ k − 1) = FX(k) − FX(k − 1),

for all integers k.

• If X is continuous, the PDF and the CDF can be obtained from each
other by integration or differentiation:

FX(x) =
∫ x

−∞
fX(t) dt,

fX(x) =
dFX

dx
(x).

(The latter relation is valid for those x for which the CDF has a deriva-
tive.)

Because the CDF is defined for any type of random variable, it provides
a convenient means for exploring the relations between continuous and discrete
random variables. This is illustrated in the following example, which shows
that there is a close relation between the geometric and the exponential random
variables.

Example 3.6. The Geometric and Exponential CDFs. Let X be a geometric
random variable with parameter p; that is, X is the number of trials to obtain the
first success in a sequence of independent Bernoulli trials, where the probability of
success is p. Thus, for k = 1, 2, . . ., we have P(X = k) = p(1 − p)k−1 and the CDF
is given by

F geo(n) =

n∑
k=1

p(1 − p)k−1 = p
1 − (1 − p)n

1 − (1 − p)
= 1 − (1 − p)n, for n = 1, 2, . . .

Suppose now that X is an exponential random variable with parameter λ > 0.
Its CDF is given by

F exp(x) = P(X ≤ x) = 0, for x ≤ 0,

and

F exp(x) =

∫ x

0

λe−λtdt = −e−λt
∣∣∣x

0
= 1 − e−λx, for x > 0.
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CDF FX(x)

x 

PDF fX (x)

a b

1

b - a 

a b

1

a b

2

b - a 

a b

1

x  - a

b - a

(x - a)2

(b - a)2

c c

Area = Fx(c)

CDF FX(x)

PDF fX (x)

x 

x 

x 

Figure 3.7: CDFs of some continuous random variables. The CDF is related to
the PDF through the formula

FX(x) = P(X ≤ x) =

∫ x

−∞
fX(t) dt.

Thus, the PDF fX can be obtained from the CDF by differentiation:

fX(x) =
dFX(x)

dx
.

For a continuous random variable, the CDF has no jumps, i.e., it is continuous.

To compare the two CDFs above, let δ = − ln(1 − p)/λ, so that

e−λδ = 1 − p.

Then we see that the values of the exponential and the geometric CDFs are equal
for all x = nδ, where n = 1, 2, . . ., i.e.,

F exp(nδ) = F geo(n), n = 1, 2, . . . ,

as illustrated in Fig. 3.8.
If δ is very small, there is close proximity of the exponential and the geometric

CDFs, provided that we scale the values taken by the geometric random variable by
δ. This relation is best interpreted by viewing X as time, either continuous, in the
case of the exponential, or δ-discretized, in the case of the geometric. In particular,
suppose that δ is a small number, and that every δ seconds, we flip a coin with the
probability of heads being a small number p. Then, the time of the first occurrence
of heads is well approximated by an exponential random variable. The parameter
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1

0 x

Geometric CDF 

1 - (1 - p)n with p = 1 - e -λδ

δ

nδ

Exponential CDF 1 - e -λx

Figure 3.8: Relation of the geometric and the exponential CDFs. We have

F exp(nδ) = F geo(n), n = 1, 2, . . . ,

if the interval δ is such that e−λδ = 1− p. As δ approaches 0, the exponential
random variable can be interpreted as the “limit” of the geometric.

λ of this exponential is such that e−λδ = 1 − p or λ = − ln(1 − p)/δ. This relation
between the geometric and the exponential random variables will play an important
role in the theory of the Bernoulli and Poisson stochastic processes in Chapter 5.

Sometimes, in order to calculate the PMF or PDF of a discrete or contin-
uous random variable, respectively, it is more convenient to first calculate the
CDF and then use the preceding relations. The systematic use of this approach
for the case of a continuous random variable will be discussed in Section 3.6.
The following is a discrete example.

Example 3.7. The Maximum of Several Random Variables. You are
allowed to take a certain test three times, and your final score will be the maximum
of the test scores. Thus,

X = max{X1, X2, X3},

where X1, X2, X3 are the three test scores and X is the final score. Assume that
your score in each test takes one of the values from 1 to 10 with equal probability
1/10, independently of the scores in other tests. What is the PMF pX of the final
score?

We calculate the PMF indirectly. We first compute the CDF FX(k) and then
obtain the PMF as

pX(k) = FX(k) − FX(k − 1), k = 1, . . . , 10.
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We have
FX(k) = P(X ≤ k)

= P(X1 ≤ k, X2 ≤ k, X3 ≤ k)

= P(X1 ≤ k)P(X2 ≤ k)P(X3 ≤ k)

=
(

k

10

)3

,

where the third equality follows from the independence of the events {X1 ≤ k},
{X2 ≤ k}, {X3 ≤ k}. Thus the PMF is given by

pX(k) =
(

k

10

)3

−
(

k − 1

10

)3

, k = 1, . . . , 10.

3.3 NORMAL RANDOM VARIABLES

A continuous random variable X is said to be normal or Gaussian if it has a
PDF of the form (see Fig. 3.9)

fX(x) =
1√
2π σ

e−(x−µ)2/2σ2
,

where µ and σ are two scalar parameters characterizing the PDF, with σ assumed
nonnegative. It can be verified that the normalization property

1√
2π σ

∫ ∞

−∞
e−(x−µ)2/2σ2

dx = 1

holds (see the theoretical problems).

1 2-1 30

Normal PDF fx(x)

x 1 2-1 30 x 

Normal CDF FX(x)

1

0.5

µ = 1 µ = 1

Figure 3.9: A normal PDF and CDF, with µ = 1 and σ2 = 1. We observe that
the PDF is symmetric around its mean µ, and has a characteristic bell-shape.

As x gets further from µ, the term e−(x−µ)2/2σ2
decreases very rapidly. In this

figure, the PDF is very close to zero outside the interval [−1, 3].
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The mean and the variance can be calculated to be

E[X] = µ, var(X) = σ2.

To see this, note that the PDF is symmetric around µ, so its mean must be µ.
Furthermore, the variance is given by

var(X) =
1√
2π σ

∫ ∞

−∞
(x − µ)2e−(x−µ)2/2σ2

dx.

Using the change of variables y = (x − µ)/σ and integration by parts, we have

var(X) =
σ2

√
2π

∫ ∞

−∞
y2e−y2/2 dy

=
σ2

√
2π

(
−ye−y2/2

) ∣∣∣∣
∞

−∞
+

σ2

√
2π

∫ ∞

−∞
e−y2/2 dy

=
σ2

√
2π

∫ ∞

−∞
e−y2/2 dy

= σ2.

The last equality above is obtained by using the fact

1√
2π

∫ ∞

−∞
e−y2/2 dy = 1,

which is just the normalization property of the normal PDF for the case where
µ = 0 and σ = 1.

The normal random variable has several special properties. The following
one is particularly important and will be justified in Section 3.6.

Normality is Preserved by Linear Transformations

If X is a normal random variable with mean µ and variance σ2, and if a, b
are scalars, then the random variable

Y = aX + b

is also normal, with mean and variance

E[Y ] = aµ + b, var(Y ) = a2σ2.
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The Standard Normal Random Variable

A normal random variable Y with zero mean and unit variance is said to be a
standard normal. Its CDF is denoted by Φ,

Φ(y) = P(Y ≤ y) = P(Y < y) =
1√
2π

∫ y

−∞
e−t2/2 dt.

It is recorded in a table (given in the next page), and is a very useful tool
for calculating various probabilities involving normal random variables; see also
Fig. 3.10.

Note that the table only provides the values of Φ(y) for y ≥ 0, because the
omitted values can be found using the symmetry of the PDF. For example, if Y
is a standard normal random variable, we have

Φ(−0.5) = P(Y ≤ −0.5) = P(Y ≥ 0.5) = 1 − P(Y < 0.5)
= 1 − Φ(0.5) = 1 − .6915 = 0.3085.

Let X be a normal random variable with mean µ and variance σ2. We
“standardize” X by defining a new random variable Y given by

Y =
X − µ

σ
.

Since Y is a linear transformation of X, it is normal. Furthermore,

E[Y ] =
E[X] − µ

σ
= 0, var(Y ) =

var(X)
σ2

= 1.

Thus, Y is a standard normal random variable. This fact allows us to calculate
the probability of any event defined in terms of X: we redefine the event in terms
of Y , and then use the standard normal table.

2-1 0

Standard Normal PDF

0.399
Mean = 0

Variance = 1

2-1 0 y 

Standard Normal CDF
Φ(y )

1

0.7

Area = Φ(0.7) Φ(0.7)

0.7

Figure 3.10: The PDF

fY (y) =
1√
2π

e−y2/2

of the standard normal random variable. Its corresponding CDF, which is denoted
by Φ(y), is recorded in a table.
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Example 3.8. Using the Normal Table. The annual snowfall at a particular
geographic location is modeled as a normal random variable with a mean of µ = 60
inches, and a standard deviation of σ = 20. What is the probability that this year’s
snowfall will be at least 80 inches?

Let X be the snow accumulation, viewed as a normal random variable, and
let

Y =
X − µ

σ
=

X − 60

20
,

be the corresponding standard normal random variable. We want to find

P(X ≥ 80) = P
(

X − 60

20
≥ 80 − 60

20

)
= P

(
Y ≥ 80 − 60

20

)
= P(Y ≥ 1) = 1−Φ(1),

where Φ is the CDF of the standard normal. We read the value Φ(1) from the table:

Φ(1) = 0.8413,

so that

P(X ≥ 80) = 1 − Φ(1) = 0.1587.

Generalizing the approach in the preceding example, we have the following
procedure.

CDF Calculation of the Normal Random Variable

The CDF of a normal random variable X with mean µ and variance σ2 is
obtained using the standard normal table as

P(X ≤ x) = P
(

X − µ

σ
≤ x − µ

σ

)
= P

(
Y ≤ x − µ

σ

)
= Φ

(
x − µ

σ

)
,

where Y is a standard normal random variable.

The normal random variable is often used in signal processing and com-
munications engineering to model noise and unpredictable distortions of signals.
The following is a typical example.

Example 3.9. Signal Detection. A binary message is transmitted as a signal
that is either −1 or +1. The communication channel corrupts the transmission with
additive normal noise with mean µ = 0 and variance σ2. The receiver concludes
that the signal −1 (or +1) was transmitted if the value received is < 0 (or ≥ 0,
respectively); see Fig. 3.11. What is the probability of error?

An error occurs whenever −1 is transmitted and the noise N is at least 1 so
that N + S = N − 1 ≥ 0, or whenever +1 is transmitted and the noise N is smaller
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+1 if N + S > 0 

-1 if N +  S <0

Transmitter ReceiverNoisy Channel
Signal 

S = +1 or -1

Normal zero-mean 
noise N 

with variance σ2

N  + S

0-1

Region of error
when a -1 is
transmitted

0

Region of error
when a +1 is
transmitted

1

Figure 3.11: The signal detection scheme of Example 3.9. The area of the
shaded region gives the probability of error in the two cases where −1 and +1
is transmitted.

than −1 so that N + S = N + 1 < 0. In the former case, the probability of error is

P(N ≥ 1) = 1 − P(N < 1) = 1 − P
(

N − µ

σ
<

1 − µ

σ

)
= 1 − Φ

(
1 − µ

σ

)
= 1 − Φ

(
1

σ

)
.

In the latter case, the probability of error is the same, by symmetry. The value
of Φ(1/σ) can be obtained from the normal table. For σ = 1, we have Φ(1/σ) =
Φ(1) = 0.8413, and the probability of the error is 0.1587.

The normal random variable plays an important role in a broad range of
probabilistic models. The main reason is that, generally speaking, it models well
the additive effect of many independent factors, in a variety of engineering, phys-
ical, and statistical contexts. Mathematically, the key fact is that the sum of a
large number of independent and identically distributed (not necessarily normal)
random variables has an approximately normal CDF, regardless of the CDF of
the individual random variables. This property is captured in the celebrated
central limit theorem, which will be discussed in Chapter 7.

3.4 CONDITIONING ON AN EVENT

The conditional PDF of a continuous random variable X, conditioned on a
particular event A with P(A) > 0, is a function fX|A that satisfies

P(X ∈ B |A) =
∫

B

fX|A(x) dx,
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for any subset B of the real line. It is the same as an ordinary PDF, except that
it now refers to a new universe in which the event A is known to have occurred.

An important special case arises when we condition on X belonging to a
subset A of the real line, with P(X ∈ A) > 0. We then have

P(X ∈ B |X ∈ A) =
P(X ∈ B and X ∈ A)

P(X ∈ A)
=

∫
A∩B

fX(x) dx

P(X ∈ A)
.

This formula must agree with the earlier one, and therefore,†

fX|A(x |A) =

{
fX(x)

P(X ∈ A)
if x ∈ A,

0 otherwise.

As in the discrete case, the conditional PDF is zero outside the conditioning
set. Within the conditioning set, the conditional PDF has exactly the same
shape as the unconditional one, except that it is scaled by the constant factor
1/P(X ∈ A). This normalization ensures that fX|A integrates to 1, which makes
it a legitimate PDF; see Fig. 3.13.

x 

fX(x)

a b

fX|A(x)

Figure 3.13: The unconditional PDF fX and the conditional PDF fX|A, where
A is the interval [a, b]. Note that within the conditioning event A, fX|A retains
the same shape as fX , except that it is scaled along the vertical axis.

Example 3.10. The exponential random variable is memoryless. Alvin
goes to a bus stop where the time T between two successive buses has an exponential
PDF with parameter λ. Suppose that Alvin arrives t secs after the preceding bus
arrival and let us express this fact with the event A = {T > t}. Let X be the time
that Alvin has to wait for the next bus to arrive. What is the conditional CDF
FX|A(x |A)?

† We are using here the simpler notation fX|A(x) in place of fX|X∈A, which is

more accurate.
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We have

P(X > x |A) = P(T > t + x |T > t)

=
P(T > t + x and T > t)

P(T > t)

=
P(T > t + x)

P(T > t)

=
e−λ(t+x)

e−λt

= e−λx,

where we have used the expression for the CDF of an exponential random variable
derived in Example 3.6.

Thus, the conditional CDF of X is exponential with parameter λ, regardless
the time t that elapsed between the preceding bus arrival and Alvin’s arrival. This
is known as the memorylessness property of the exponential. Generally, if we model
the time to complete a certain operation by an exponential random variable X,
this property implies that as long as the operation has not been completed, the
remaining time up to completion has the same exponential CDF, no matter when
the operation started.

For a continuous random variable, the conditional expectation is defined
similar to the unconditional case, except that we now need to use the condi-
tional PDF. We summarize the discussion so far, together with some additional
properties in the table that follows.

Conditional PDF and Expectation Given an Event

• The conditional PDF fX|A of a continuous random variable X given
an event A with P(A) > 0, satisfies

P(X ∈ B |A) =
∫

B

fX|A(x) dx.

• If A be a subset of the real line with P(X ∈ A) > 0, then

fX|A(x) =




fX(x)
P(X ∈ A)

if x ∈ A,

0 otherwise,

and
P(X ∈ B |X ∈ A) =

∫
B

fX|A(x) dx,

for any set B.
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• The corresponding conditional expectation is defined by

E[X |A] =
∫ ∞

−∞
xfX|A(x) dx.

• The expected value rule remains valid:

E
[
g(X) |A

]
=

∫ ∞

−∞
g(x)fX|A(x) dx.

• If A1, A2, . . . , An are disjoint events with P(Ai) > 0 for each i, that
form a partition of the sample space, then

fX(x) =
n∑

i=1

P(Ai)fX|Ai
(x)

(a version of the total probability theorem), and

E[X] =
n∑

i=1

P(Ai)E[X |Ai]

(the total expectation theorem). Similarly,

E
[
g(X)

]
=

n∑
i=1

P(Ai)E
[
g(X) |Ai

]
.

To justify the above version of the total probability theorem, we use the
total probability theorem from Chapter 1, to obtain

P(X ≤ x) =
n∑

i=1

P(Ai)P(X ≤ x |Ai).

This formula can be rewritten as∫ x

−∞
fX(t) dt =

n∑
i=1

P(Ai)
∫ x

−∞
fX|Ai

(t) dt.

We take the derivative of both sides, with respect to x, and obtain the desired
relation

fX(x) =
n∑

i=1

P(Ai)fX|Ai
(x).
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If we now multiply both sides by x and then integrate from −∞ to ∞, we obtain
the total expectation theorem for continuous random variables.

The total expectation theorem can often facilitate the calculation of the
mean, variance, and other moments of a random variable, using a divide-and-
conquer approach.

Example 3.11. Mean and Variance of a Piecewise Constant PDF. Suppose
that the random variable X has the piecewise constant PDF

fX(x) =

{
1/3 if 0 ≤ x ≤ 1,
2/3 if 1 < x ≤ 2,
0 otherwise,

(see Fig. 3.14). Consider the events

A1 =
{
X lies in the first interval [0, 1]

}
,

A2 =
{
X lies in the second interval (1, 2]

}
.

We have from the given PDF,

P(A1) =

∫ 1

0

fX(x) dx =
1

3
, P(A2) =

∫ 2

1

fX(x) dx =
2

3
.

Furthermore, the conditional mean and second moment of X, conditioned on A1

and A2, are easily calculated since the corresponding conditional PDFs fX|A1
and

fX|A2
are uniform. We recall from Example 3.4 that the mean of a uniform random

variable on an interval [a, b] is (a + b)/2 and its second moment is (a2 + ab + b2)/3.
Thus,

E[X |A1] =
1

2
, E[X |A2] =

3

2
,

E
[
X2 |A1

]
=

1

3
, E

[
X2 |A2

]
=

7

3
.

x1

fx(x)

2

1/3

2/3

Figure 3.14: Piecewise con-

stant PDF for Example 3.11.
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We now use the total expectation theorem to obtain

E[X] = P(A1)E[X |A1] + P(A2)E[X |A2] =
1

3
· 1

2
+

2

3
· 3

2
=

7

6
,

E[X2] = P(A1)E[X2 |A1] + P(A2)E[X2 |A2] =
1

3
· 1

3
+

2

3
· 7

3
=

15

9
.

The variance is given by

var(X) = E[X2] −
(
E[X]

)2
=

15

9
− 49

36
=

11

36
.

Note that this approach to the mean and variance calculation is easily generalized
to piecewise constant PDFs with more than two pieces.

The next example illustrates a divide-and-conquer approach that uses the
total probability theorem to calculate a PDF.

Example 3.12. The metro train arrives at the station near your home every
quarter hour starting at 6:00 AM. You walk into the station every morning between
7:10 and 7:30 AM, with the time in this interval being a uniform random variable.
What is the PDF of the time you have to wait for the first train to arrive?

x 

fX(x)

7:10 7:15 7:30

fY|A(y)

y5

1/5

fY(y)

y

fY|B(y)

y15

1/15

5 15

1/10

1/20

(a) (b)

(c) (d)

Figure 3.15: The PDFs fX , fY |A, fY |B , and fY in Example 3.12.

The time of your arrival, denoted by X, is a uniform random variable on the
interval from 7:10 to 7:30; see Fig. 3.15(a). Let Y be the waiting time. We calculate
the PDF fY using a divide-and-conquer strategy. Let A and B be the events

A = {7:10 ≤ X ≤ 7:15} = {you board the 7:15 train},
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B = {7:15 < X ≤ 7:30} = {you board the 7:30 train}.

Conditioned on the event A, your arrival time is uniform on the interval from 7:10
to 7:15. In that case, the waiting time Y is also uniform and takes values between
0 and 5 minutes; see Fig. 3.15(b). Similarly, conditioned on B, Y is uniform and
takes values between 0 and 15 minutes; see Fig. 3.15(c). The PDF of Y is obtained
using the total probability theorem,

fY (y) = P(A)fY |A(y) + P(B)fY |B(y),

and is shown in Fig. 3.15(d). In particular,

fY (y) =
1

4
· 1

5
+

3

4
· 1

15
=

1

10
, for 0 ≤ y ≤ 5,

and

fY (y) =
1

4
· 0 +

3

4
· 1

15
=

1

20
, for 5 < y ≤ 15.

3.5 MULTIPLE CONTINUOUS RANDOM VARIABLES

We will now extend the notion of a PDF to the case of multiple random vari-
ables. In complete analogy with discrete random variables, we introduce joint,
marginal, and conditional PDFs. Their intuitive interpretation as well as their
main properties parallel the discrete case.

We say that two continuous random variables associated with a common
experiment are jointly continuous and can be described in terms of a joint
PDF fX,Y , if fX,Y is a nonnegative function that satisfies

P
(
(X, Y ) ∈ B

)
=

∫ ∫
(x,y)∈B

fX,Y (x, y) dx dy,

for every subset B of the two-dimensional plane. The notation above means
that the integration is carried over the set B. In the particular case where B is
a rectangle of the form B = [a, b] × [c, d], we have

P(a ≤ X ≤ b, c ≤ Y ≤ d) =
∫ d

c

∫ b

a

fX,Y (x, y) dx dy.

Furthermore, by letting B be the entire two-dimensional plane, we obtain the
normalization property ∫ ∞

−∞

∫ ∞

−∞
fX,Y (x, y) dx dy = 1.
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To interpret the PDF, we let δ be very small and consider the probability
of a small rectangle. We have

P(a ≤ X ≤ a+δ, c ≤ Y ≤ c+δ) =
∫ c+δ

c

∫ a+δ

a

fX,Y (x, y) dx dy ≈ fX,Y (a, c) ·δ2,

so we can view fX,Y (a, c) as the “probability per unit area” in the vicinity of
(a, c).

The joint PDF contains all conceivable probabilistic information on the
random variables X and Y , as well as their dependencies. It allows us to calculate
the probability of any event that can be defined in terms of these two random
variables. As a special case, it can be used to calculate the probability of an
event involving only one of them. For example, let A be a subset of the real line
and consider the event {X ∈ A}. We have

P(X ∈ A) = P
(
X ∈ A and Y ∈ (−∞,∞)

)
=

∫
A

∫ ∞

−∞
fX,Y (x, y) dy dx.

Comparing with the formula

P(X ∈ A) =
∫

A

fX(x) dx,

we see that the marginal PDF fX of X is given by

fX(x) =
∫ ∞

−∞
fX,Y (x, y) dy.

Similarly,

fY (y) =
∫ ∞

−∞
fX,Y (x, y) dx.

Example 3.13. Two-Dimensional Uniform PDF. Romeo and Juliet have a
date at a given time, and each will arrive at the meeting place with a delay between
0 and 1 hour (recall the example given in Section 1.2). Let X and Y denote the
delays of Romeo and Juliet, respectively. Assuming that no pairs (x, y) in the
square [0, 1] × [0, 1] are more likely than others, a natural model involves a joint
PDF of the form

fX,Y (x, y) =
{

c if 0 ≤ x ≤ 1 and 0 ≤ y ≤ 1,
0 otherwise,

where c is a constant. For this PDF to satisfy the normalization property

∫ ∞

−∞

∫ ∞

−∞
fX,Y (x, y) dx dy =

∫ 1

0

∫ 1

0

c dx dy = 1,
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we must have

c = 1.

This is an example of a uniform PDF on the unit square. More generally,
let us fix some subset S of the two-dimensional plane. The corresponding uniform
joint PDF on S is defined to be

fX,Y (x, y) =

{ 1

area of S
if (x, y) ∈ S,

0 otherwise.

For any set A ⊂ S, the probability that the experimental value of (X, Y ) lies in A
is

P
(
(X, Y ) ∈ A

)
=

∫ ∫
(x,y)∈A

fX,Y (x, y) dx dy =
1

area of S

∫ ∫
(x,y)∈A∩S

dx dy =
area of A ∩ S

area of S
.

Example 3.14. We are told that the joint PDF of the random variables X and Y
is a constant c on the set S shown in Fig. 3.16 and is zero outside. Find the value
of c and the marginal PDFs of X and Y .

The area of the set S is equal to 4 and, therefore, fX,Y (x, y) = c = 1/4, for
(x, y) ∈ S. To find the marginal PDF fX(x) for some particular x, we integrate
(with respect to y) the joint PDF over the vertical line corresponding to that x.
The resulting PDF is shown in the figure. We can compute fY similarly.

x 

fX(x)

fY(y)

y

S

x 

1/4

3/4

y

1/4

1/2

1 3

4

2

2

1

3

Figure 3.16: The joint PDF in Example 3.14 and the resulting marginal
PDFs.
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Example 3.15. Buffon’s Needle. This is a famous example, which marks
the origin of the subject of geometrical probability, that is, the analysis of the
geometrical configuration of randomly placed objects.

A surface is ruled with parallel lines, which are at distance d from each other
(see Fig. 3.17). Suppose that we throw a needle of length l on the surface at random.
What is the probability that the needle will intersect one of the lines?

x

d

θ

l

Figure 3.17: Buffon’s needle. The

length of the line segment between the

midpoint of the needle and the point

of intersection of the axis of the needle

with the closest parallel line is x/ sin θ.

The needle will intersect the closest par-

allel line if and only if this length is less

than l/2.

We assume here that l < d so that the needle cannot intersect two lines
simultaneously. Let X be the distance from the midpoint of the needle to the
nearest of the parallel lines, and let Θ be the acute angle formed by the axis of the
needle and the parallel lines (see Fig. 3.17). We model the pair of random variables
(X, Θ) with a uniform joint PDF over the rectangle [0, d/2] × [0, π/2], so that

fX,Θ(x, θ) =
{

4/(πd) if x ∈ [0, d/2] and θ ∈ [0, π/2],
0 otherwise.

As can be seen from Fig. 3.17, the needle will intersect one of the lines if and
only if

X ≤ l

2
sinΘ,

so the probability of intersection is

P
(
X ≤ (l/2) sinΘ

)
=

∫ ∫
x≤(l/2) sin θ

fX,Θ(x, θ) dx dθ

=
4

πd

∫ π/2

0

∫ (l/2) sin θ

0

dx dθ

=
4

πd

∫ π/2

0

l

2
sin θ dθ

=
2l

πd
(− cos θ)

∣∣∣π/2

0

=
2l

πd
.

The probability of intersection can be empirically estimated, by repeating the ex-
periment a large number of times. Since it is equal to 2l/πd, this provides us with
a method for the experimental evaluation of π.
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Expectation

If X and Y are jointly continuous random variables, and g is some function, then
Z = g(X, Y ) is also a random variable. We will see in Section 3.6 methods for
computing the PDF of Z, if it has one. For now, let us note that the expected
value rule is still applicable and

E
[
g(X, Y )

]
=

∫ ∞

−∞

∫ ∞

−∞
g(x, y)fX,Y (x, y) dx dy.

As an important special case, for any scalars a, b, we have

E[aX + bY ] = aE[X] + bE[Y ].

Conditioning One Random Variable on Another

Let X and Y be continuous random variables with joint PDF fX,Y . For any
fixed y with fY (y) > 0, the conditional PDF of X given that Y = y, is defined
by

fX|Y (x | y) =
fX,Y (x, y)

fY (y)
.

This definition is analogous to the formula pX|Y = pX,Y /pY for the discrete case.
When thinking about the conditional PDF, it is best to view y as a fixed

number and consider fX|Y (x | y) as a function of the single variable x. As a
function of x, the conditional PDF fX|Y (x | y) has the same shape as the joint
PDF fX,Y (x, y), because the normalizing factor fY (y) does not depend on x; see
Fig. 3.18. Note that the normalization ensures that∫ ∞

−∞
fX|Y (x | y) dx = 1,

so for any fixed y, fX|Y (x | y) is a legitimate PDF.

x 

fX|Y(x|1.5)

y

S

1 3

4

2

2

1

3
x 

x 

x 1 32

fX|Y(x|2.5)

fX|Y(x|3.5)

1

1

1/2

Figure 3.18: Visualization of the conditional PDF fX|Y (x | y). Let X, Y have a
joint PDF which is uniform on the set S. For each fixed y, we consider the joint
PDF along the slice Y = y and normalize it so that it integrates to 1.
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Example 3.16. Circular Uniform PDF. John throws a dart at a circular
target of radius r (see Fig. 3.19). We assume that he always hits the target, and
that all points of impact (x, y) are equally likely, so that the joint PDF of the
random variables X and Y is uniform. Following Example 3.13, and since the area
of the circle is πr2, we have

fX,Y (x, y) =

{
1

area of the circle
if (x, y) is in the circle,

0 otherwise,

=

{
1

πr2
if x2 + y2 ≤ r2,

0 otherwise.

x 

y 

r Figure 3.19: Circular target for

Example 3.16.

To calculate the conditional PDF fX|Y (x | y), let us first calculate the marginal
PDF fY (y). For |y| > r, it is zero. For |y| ≤ r, it can be calculated as follows:

fY (y) =

∫ ∞

−∞
fX,Y (x, y) dx

=
1

πr2

∫
x2+y2≤r2

dx

=
1

πr2

∫ √
r2−y2

−
√

r2−y2

dx

=
2

πr2

√
r2 − y2.

Note that the marginal fY (y) is not a uniform PDF.
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The conditional PDF is

fX|Y (x | y) =
fX,Y (x, y)

fY (y)

=

1

πr2

2

πr2

√
r2 − y2

=
1

2
√

r2 − y2
.

Thus, for a fixed value of y, the conditional PDF fX|Y is uniform.

To interpret the conditional PDF, let us fix some small positive numbers
δ1 and δ2, and condition on the event B = {y ≤ Y ≤ y + δ2}. We have

P(x ≤ X ≤ x + δ1 | y ≤ Y ≤ y + δ2) =
P(x ≤ X ≤ x + δ1 and y ≤ Y ≤ y + δ2)

P(y ≤ Y ≤ y + δ2)

≈ fX,Y (x, y)δ1δ2

fY (y)δ2
= fX|Y (x | y)δ1.

In words, fX|Y (x | y)δ1 provides us with the probability that X belongs in a
small interval [x, x + δ1], given that Y belongs in a small interval [y, y + δ2].
Since fX|Y (x | y)δ1 does not depend on δ2, we can think of the limiting case
where δ2 decreases to zero and write

P(x ≤ X ≤ x + δ1 |Y = y) ≈ fX|Y (x | y)δ1, (δ1 small),

and, more generally,

P(X ∈ A |Y = y) =
∫

A

fX|Y (x | y) dx.

Conditional probabilities, given the zero probability event {Y = y}, were left
undefined in Chapter 1. But the above formula provides a natural way of defining
such conditional probabilities in the present context. In addition, it allows us to
view the conditional PDF fX|Y (x | y) (as a function of x) as a description of the
probability law of X, given that the event {Y = y} has occurred.

As in the discrete case, the conditional PDF fX|Y , together with the
marginal PDF fY are sometimes used to calculate the joint PDF. Furthermore,
this approach can be also used for modeling: instead of directly specifying fX,Y ,
it is often natural to provide a probability law for Y , in terms of a PDF fY , and
then provide a conditional probability law fX|Y (x, y) for X, given any possible
value y of Y .

Example 3.17. Let X be exponentially distributed with mean 1. Once we
observe the experimental value x of X, we generate a normal random variable Y
with zero mean and variance x + 1. What is the joint PDF of X and Y ?
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We have fX(x) = e−x, for x ≥ 0, and

fY |X(y |x) =
1√

2π(x + 1)
e−y2/2(x+1).

Thus,

fX,Y (x, y) = fX(x)fY |X(y |x) = e−x 1√
2π(x + 1)

e−y2/2(x+1),

for all x ≥ 0 and all y.

Having defined a conditional probability law, we can also define a corre-
sponding conditional expectation by letting

E[X |Y = y] =
∫ ∞

−∞
xfX|Y (x | y) dx.

The properties of (unconditional) expectation carry though, with the obvious
modifications, to conditional expectation. For example the conditional version
of the expected value rule

E[g(X) |Y = y] =
∫ ∞

−∞
g(x)fX|Y (x | y) dx

remains valid.

Summary of Facts About Multiple Continuous Random Variables

Let X and Y be jointly continuous random variables with joint PDF fX,Y .

• The joint, marginal, and conditional PDFs are related to each other
by the formulas

fX,Y (x, y) = fY (y)fX|Y (x | y),

fX(x) =
∫ ∞

−∞
fY (y)fX |Y (x | y) dy.

The conditional PDF fX|Y (x | y) is defined only for those y for which
fY (y) > 0.



34 General Random Variables Chap. 3

• They can be used to calculate probabilities:

P
(
(X, Y ) ∈ B

)
=

∫ ∫
(x,y)∈B

fX,Y (x, y) dx dy,

P(X ∈ A) =
∫

A

fX(x) dx,

P(X ∈ A |Y = y) =
∫

A

fX|Y (x | y) dx.

• They can also be used to calculate expectations:

E[g(X)] =
∫

g(x)fX(x) dx,

E
[
g(X, Y )

]
=

∫ ∫
g(x, y)fX,Y (x, y) dx dy,

E
[
g(X) |Y = y

]
=

∫
g(x)fX|Y (x | y) dx,

E
[
g(X, Y ) |Y = y

]
=

∫
g(x, y)fX|Y (x | y) dx.

• We have the following versions of the total expectation theorem:

E[X] =
∫

E[X |Y = y]fY (y) dy,

E
[
g(X)

]
=

∫
E

[
g(X) |Y = y]fY (y) dy,

E
[
g(X, Y )

]
=

∫
E

[
g(X, Y ) |Y = y]fY (y) dy.

To justify the first version of the total expectation theorem, we observe
that

∫
E[X |Y = y]fY (y) dy =

∫ [∫
xfX|Y (x | y) dx

]
fY (y) dy

=
∫ ∫

xfX|Y (x | y)fY (y) dx dy

=
∫ ∫

xfX,Y (x, y) dx dy
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=
∫

x

[∫
fX,Y (x, y) dy

]
dx

=
∫

xfX(x) dx

= E[X].

The other two versions are justified similarly.

Inference and the Continuous Bayes’ Rule

In many situations, we have a model of an underlying but unobserved phe-
nomenon, represented by a random variable X with PDF fX , and we make
noisy measurements Y . The measurements are supposed to provide information
about X and are modeled in terms of a conditional PDF fY |X . For example, if
Y is the same as X, but corrupted by zero-mean normally distributed noise, one
would let the conditional PDF fY |X(y |x) of Y , given that X = x, be normal
with mean equal to x. Once the experimental value of Y is measured, what
information does this provide on the unknown value of X?

This setting is similar to that encountered in Section 1.4, when we intro-
duced the Bayes rule and used it to solve inference problems. The only difference
is that we are now dealing with continuous random variables.

Note that the information provided by the event {Y = y} is described by
the conditional PDF fX|Y (x | y). It thus suffices to evaluate the latter PDF. A
calculation analogous to the original derivation of the Bayes’ rule, based on the
formulas fXfY |X = fX,Y = fY fX|Y , yields

fX|Y (x | y) =
fX(x)fY |X(y |x)

fY (y)
=

fX(x)fY |X(y |x)∫
fX(t)fY |X(y | t)dt

,

which is the desired formula.

Example 3.18. A lightbulb produced by the General Illumination Company is
known to have an exponentially distributed lifetime Y . However, the company has
been experiencing quality control problems. On any given day, the parameter λ of
the PDF of Y is actually a random variable, uniformly distributed in the interval
[0, 1/2]. We test a lightbulb and record the experimental value y of its lifetime.
What can we say about the underlying parameter λ?

We model the parameter λ as a random variable X, with a uniform distri-
bution. All available information about X is contained in the conditional PDF
fX|X(x | y). We view y as a constant (equal to the observed value of Y ) and con-
centrate on the dependence of the PDF on x. Note that fX(x) = 2, for 0 ≤ x ≤ 1/2.
By the continuous Bayes rule, we have

fX|Y (x | y) =
2xe−xy∫ 1/2

0
2te−tydt

, for 0 ≤ x ≤ 1

2
.
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In some cases, the unobserved phenomenon is inherently discrete. For
example, if a binary signal is observed in the presence of noise with a normal
distribution. Or if a medical diagnosis is to be made on the basis of continuous
measurements like temperature and blood counts. In such cases, a somewhat
different version of Bayes’ rule applies.

Let X be a discrete random variable that takes values in a finite set
{1, . . . , n} and which represents the different discrete possibilities for the un-
observed phenomenon of interest. The PMF pX of X is assumed to be known.
Let Y be a continuous random variable which, for any given value x, is described
by a conditional PDF fY |X(y |x). We are interested in the conditional PMF of
X given the experimental value y of Y .

Instead of working with conditioning event {Y = y} which has zero proba-
bility, let us instead condition on the event {y ≤ Y ≤ y + δ}, where δ is a small
positive number, and then take the limit as δ tends to zero. We have, using the
Bayes rule

P(X = x |Y = y) ≈ P(X = x | y ≤ Y ≤ y + δ)

=
pX(x)P(y ≤ Y ≤ y + δ |X = x)

P(y ≤ Y ≤ y + δ)

≈ pX(x)fY |X(y |x)δ
fY (y)δ

=
pX(x)fY |X(y |x)

fY (y)
.

The denominator can be evaluated using a version of the total probability theo-
rem introduced in Section 3.4. We have

fY (y) =
n∑

i=1

pX(i)fY |X(y | i).

Example 3.19. Let us revisit the signal detection problem considered in 3.9. A
signal S is transmitted and we are given that P(S = 1) = p and P(S = −1) = 1−p.
The received signal is Y = N +S, where N is zero mean normal noise, with variance
σ2, independent of S. What is the probability that S = 1, as a function of the
observed value y of Y ?

Conditioned on S = s, the random variable Y has a normal distribution with
mean s and variance σ2. Applying the formula developed above, we obtain

P(S = 1 |Y = y) =
pS(1)fY |S(y | 1)

fY (y)
=

p√
2π σ

e−(y−1)2/2σ2

p√
2π σ

e−(y−1)2/2σ2 + 1−p√
2π σ

e−(y+1)2/2σ2
.
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Independence

In full analogy with the discrete case, we say that two continuous random vari-
ables X and Y are independent if their joint PDF is the product of the marginal
PDFs:

fX,Y (x, y) = fX(x)fY (y), for all x, y.

Comparing with the formula fX,Y (x, y) = fX|Y (x | y)fY (y), we see that inde-
pendence is the same as the condition

fX|Y (x | y) = fX(x), for all x and all y with fY (y) > 0,

or, symmetrically,

fY |X(y |x) = fY (y), for all y and all x with fX(x) > 0.

If X and Y are independent, then any two events of the form {X ∈ A} and
{Y ∈ B} are independent. Indeed,

P(X ∈ A and Y ∈ B) =
∫

x∈A

∫
y∈B

fX,Y (x, y) dy dx

=
∫

x∈A

∫
y∈B

fX(x)fY (y) dy dx

=
∫

x∈A

fX(x) dx

∫
y∈B

fY (y) dy

= P(X ∈ A)P(Y ∈ B).

A converse statement is also true; see the theoretical problems.
A calculation similar to the discrete case shows that if X and Y are inde-

pendent, then

E[g(X)h(Y )] = E[g(X)]E[h(Y )],

for any two functions g and h. Finally, the variance of the sum of independent
random variables is again equal to the sum of the variances.
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Independence of Continuous Random Variables

Suppose that X and Y are independent, that is,

fX,Y (x, y) = fX(x)fY (y), for all x, y.

We then have the following properties.

• The random variables g(X) and h(Y ) are independent, for any func-
tions g and h.

• We have
E[XY ] = E[X]E[Y ],

and, more generally,

E
[
g(X)h(Y )

]
= E

[
g(X)

]
E

[
h(Y )

]
,

• We have
var(X + Y ) = var(X) + var(Y ).

Joint CDFs

If X and Y are two random variables associated with the same experiment, we
define their joint CDF by

FX,Y (x, y) = P(X ≤ x, Y ≤ y).

As in the case of one random variable, the advantage of working with the CDF
is that it applies equally well to discrete and continuous random variables. In
particular, if X and Y are described by a joint PDF fX,Y , then

FX,Y (x, y) = P(X ≤ x, Y ≤ y) =
∫ x

−∞

∫ y

−∞
fX,Y (s, t) ds dt.

Conversely, the PDF can be recovered from the PDF by differentiating:

fX,Y (x, y) =
∂2FX,Y

∂x∂y
(x, y).

Example 3.20. Let X and Y be described by a uniform PDF on the unit square.
The joint CDF is given by

FX,Y (x, y) = P(X ≤ x, Y ≤ y) = xy, for 0 ≤ x, y ≤ 1.
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We then verify that

∂2FX,Y

∂x∂y
(x, y) =

∂2(xy)

∂x∂y
(x, y) = 1 = fX,Y (x, y),

for all (x, y) in the unit square.

More than Two Random Variables

The joint PDF of three random variables X, Y , and Z is defined in analogy with
the above. For example, we have

P
(
(X, Y, Z) ∈ B

)
=

∫ ∫ ∫
(x,y,z)∈B

fX,Y,Z(x, y, z) dx dy dz,

for any set B. We also have relations such as

fX,Y (x, y) =
∫

fX,Y,Z(x, y, z) dz,

and
fX(x) =

∫ ∫
fX,Y,Z(x, y, z) dy dz.

One can also define conditional PDFs by formulas such as

fX,Y |Z(x, y | z) =
fX,Y,Z(x, y, z)

fZ(z)
, for fZ(z) > 0,

fX|Y,Z(x | y, z) =
fX,Y,Z(x, y, z)

fY,Z(y, z)
, for fY,Z(y, z) > 0.

There is an analog of the multiplication rule:

fX,Y,Z(x, y, z) = fX|Y,Z(x | y, z)fY |Z(y | z)fZ(z).

Finally, we say that the three random variables X, Y , and Z are independent if

fX,Y,Z(x, y, z) = fX(x)fY (y)fZ(z), for all x, y, z.

The expected value rule for functions takes the form

E
[
g(X, Y, Z)

]
=

∫ ∫ ∫
g(x, y, z)fX,Y,Z(x, y, z) dx dy dz,

and if g is linear and of the form aX + bY + cZ, then

E[aX + bY + cZ] = aE[X] + bE[Y ] + cE[Z].

Furthermore, there are obvious generalizations of the above to the case of more
than three random variables. For example, for any random variables X1, X2, . . . , Xn

and any scalars a1, a2, . . . , an, we have

E[a1X1 + a2X2 + · · · + anXn] = a1E[X1] + a2E[X2] + · · · + anE[Xn].
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3.6 DERIVED DISTRIBUTIONS

We have seen that the mean of a function Y = g(X) of a continuous random
variable X, can be calculated using the expected value rule

E[Y ] =
∫ ∞

−∞
g(x)fX(x) dx,

without first finding the PDF fY of Y . Still, in some cases, we may be interested
in an explicit formula for fY . Then, the following two-step approach can be
used.

Calculation of the PDF of a Function Y = g(X) of a Continuous
Random Variable X

1. Calculate the CDF FY of Y using the formula

FY (y) = P
(
g(X) ≤ y

)
=

∫
{x | g(x)≤y}

fX(x) dx.

2. Differentiate to obtain the PDF of Y :

fY (y) =
dFY

dy
(y).

Example 3.21. Let X be uniform on [0, 1]. Find the PDF of Y =
√

X. Note
that Y takes values between 0 and 1. For every y ∈ [0, 1], we have

FY (y) = P(Y ≤ y) = P(
√

X ≤ y) = P(X ≤ y2) = y2, 0 ≤ y ≤ 1.

We then differentiate and obtain

fY (y) =
dFY

dy
(y) =

d(y2)

dy
= 2y, 0 ≤ y ≤ 1.

Outside the range [0, 1], the CDF FY (y) is constant, with FY (y) = 0 for y ≤ 0, and
FY (y) = 1 for y ≥ 1. By differentiating, we see that fY (y) = 0 for y outside [0, 1].

Example 3.22. John Slow is driving from Boston to the New York area, a
distance of 180 miles. His average speed is uniformly distributed between 30 and
60 miles per hour. What is the PDF of the duration of the trip?
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Let X be the speed and let Y = g(X) be the trip duration:

g(X) =
180

X
.

To find the CDF of Y , we must calculate

P(Y ≤ y) = P
(

180

X
≤ y

)
= P

(
180

y
≤ X

)
.

We use the given uniform PDF of X, which is

fX(x) =
{

1/30 if 30 ≤ x ≤ 60,
0 otherwise,

and the corresponding CDF, which is

FX(x) =

{
0 if x ≤ 30,
(x − 30)/30 if 30 ≤ x ≤ 60,
1 if 60 ≤ x.

Thus,

FY (y) = P

(
180

y
≤ X

)

= 1 − FX

(
180

y

)

=




0 if y ≤ 180/60,

1 −

180

y
− 30

30
if 180/60 ≤ y ≤ 180/30,

1 if 180/30 ≤ y,

=

{
0 if y ≤ 3,
2 − (6/y) if 3 ≤ y ≤ 6,
1 if 6 ≤ y,

(see Fig. 3.20). Differentiating this expression, we obtain the PDF of Y :

fY (y) =

{
0 if y ≤ 3,
6/y2 if 3 ≤ y ≤ 6,
0 if 6 ≤ y.

Example 3.23. Let Y = g(X) = X2, where X is a random variable with known
PDF. For any y ≥ 0, we have

FY (y) = P(Y ≤ y)

= P(X2 ≤ y)

= P(−√
y ≤ X ≤ √

y)

= FX(
√

y) − FX(−√
y),

and therefore, by differentiating and using the chain rule,

fY (y) =
1

2
√

y
fX(

√
y) +

1

2
√

y
fX(−√

y), y ≥ 0.
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Figure 3.20: The calculation of the PDF of Y = 180/X in Example 3.22. The
arrows indicate the flow of the calculation.

The Linear Case

An important case arises when Y is a linear function of X. See Fig. 3.21 for a
graphical interpretation.

The PDF of a Linear Function of a Random Variable

Let X be a continuous random variable with PDF fX , and let

Y = aX + b,

for some scalars a �= 0 and b. Then,

fY (y) =
1
|a|fX

(
y − b

a

)
.

To verify this formula, we use the two-step procedure. We only show the
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fX
faX

−1 2

faX+b

3 4 9−2

Figure 3.21: The PDF of aX + b in terms of the PDF of X. In this figure,
a = 2 and b = 5. As a first step, we obtain the PDF of aX. The range of Y is
wider than the range of X, by a factor of a. Thus, the PDF fX must be stretched
(scaled horizontally) by this factor. But in order to keep the total area under the
PDF equal to 1, we need to scale the PDF (vertically) by the same factor a. The
random variable aX + b is the same as aX except that its values are shifted by
b. Accordingly, we take the PDF of aX and shift it (horizontally) by b. The end
result of these operations is the PDF of Y = aX + b and is given mathematically
by

fY (y) =
1

|a|
fX

(
y − b

a

)
.

If a were negative, the procedure would be the same except that the
PDF of X would first need to be reflected around the vertical axis (“flipped”)
yielding f−X . Then a horizontal and vertical scaling (by a factor of |a| and 1/|a|,
respectively) yields the PDF of −|a|X = aX. Finally, a horizontal shift of b would
again yield the PDF of aX + b.

steps for the case where a > 0; the case a < 0 is similar. We have

FY (y) = P(Y ≤ y)
= P(aX + b ≤ y)

= P
(

X ≤ y − b

a

)

= FX

(
y − b

a

)
.

We now differentiate this equality and use the chain rule, to obtain

fY (y) =
dFY

dy
(y) =

1
a
· dFX

dx

(
y − b

a

)
=

1
a
· fX

(
y − b

a

)
.

Example 3.24. A linear function of an exponential random variable.
Suppose that X is an exponential random variable with PDF

fX(x) =

{
λe−λx if x ≥ 0,
0 otherwise,
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where λ is a positive parameter. Let Y = aX + b. Then,

fY (y) =

{
λ

|a|e
−λ(y−b)/a if (y − b)/a ≥ 0,

0 otherwise.

Note that if b = 0 and a > 0, then Y is an exponential random variable with
parameter λ/a. In general, however, Y need not be exponential. For example, if
a < 0 and b = 0, then the range of Y is the negative real axis.

Example 3.25. A linear function of a normal random variable is normal.
Suppose that X is a normal random variable with mean µ and variance σ2, and let
Y = aX + b, where a and b are some scalars. We have

fX(x) =
1√
2π σ

e−(x−µ)2/2σ2
.

Therefore,

fY (y) =
1

|a|fX

(
y − b

a

)
=

1

|a|
1√
2π σ

e−((y−b)/a)−µ)2/2σ2

=
1√

2π |a|σ
e−(y−b−aµ)2/2a2σ2

.

We recognize this as a normal PDF with mean aµ + b and variance a2σ2. In
particular, Y is a normal random variable.

The Monotonic Case

The calculation and the formula for the linear case can be generalized to
the case where g is a monotonic function. Let X be a continuous random variable
and suppose that its range is contained in a certain interval I, in the sense that
fX(x) = 0 for x /∈ I. We consider the random variable Y = g(X), and assume
that g is strictly monotonic over the interval I. That is, either

(a) g(x) < g(x′) for all x, x′ ∈ I satisfying x < x′ (monotonically increasing
case), or

(b) g(x) > g(x′) for all x, x′ ∈ I satisfying x < x′ (monotonically decreasing
case).

Furthermore, we assume that the function g is differentiable. Its derivative
will necessarily be nonnegative in the increasing case and nonpositive in the
decreasing case.
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An important fact is that a monotonic function can be “inverted” in the
sense that there is some function h, called the inverse of g, such that for all
x ∈ I, we have y = g(x) if and only if x = h(y). For example, the inverse of the
function g(x) = 180/x considered in Example 3.22 is h(y) = 180/y, because we
have y = 180/x if and only if x = 180/y. Other such examples of pairs of inverse
functions include

g(x) = ax + b, h(y) =
y − b

a
,

where a and b are scalars with a �= 0 (see Fig. 3.22), and

g(x) = eax, h(y) =
ln y

a
,

where a is a nonzero scalar.

0

h(y) = 

x

y

Slope a
b

0

g(x) = ax + b

x

yb

Slope 1/a

y - b
a

0 x

y

0

g(x)  

x

y

h(y)  
y = g(x)  

x = h(y)  

Figure 3.22: A monotonically increasing function g (on the left) and its inverse
(on the right). Note that the graph of h has the same shape as the graph of g,
except that it is rotated by 90 degrees and then reflected (this is the same as
interchanging the x and y axes).

For monotonic functions g, the following is a convenient analytical formula
for the PDF of the function Y = g(X).



46 General Random Variables Chap. 3

PDF Formula for a Monotonic Function of a Continuous Random
Variable

Suppose that g is monotonic and that for some function h and all x in the
range I of X we have

y = g(x) if and only if x = h(y).

Assume that h has first derivative (dh/dy)(y). Then the PDF of Y in the
region where fY (y) > 0 is given by

fY (y) = fX

(
h(y)

) ∣∣∣∣dh

dy
(y)

∣∣∣∣ .

For a verification of the above formula, assume first that g is monotonically
increasing. Then, we have

FY (y) = P
(
g(X) ≤ y

)
= P

(
X ≤ h(y)

)
= FX

(
h(y)

)
,

where the second equality can be justified using the monotonically increasing
property of g (see Fig. 3.23). By differentiating this relation, using also the
chain rule, we obtain

fY (y) =
dFY

dy
(y) = fX

(
h(y)

)dh

dy
(y).

Because g is monotonically increasing, h is also monotonically increasing, so its
derivative is positive:

dh

dy
(y) =

∣∣∣∣dh

dy
(y)

∣∣∣∣ .

This justifies the PDF formula for a monotonically increasing function g. The
justification for the case of monotonically decreasing function is similar: we
differentiate instead the relation

FY (y) = P
(
g(X) ≤ y

)
= P

(
X ≥ h(y)

)
= 1 − FX

(
h(y)

)
,

and use the chain rule.
There is a similar formula involving the derivative of g, rather than the

derivative of h. To see this, differentiate the equality g
(
h(y)

)
= y, and use the

chain rule to obtain
dg

dh

(
h(y)

)
· dh

dy
(y) = 1.



Sec. 3.6 Derived Distributions 47

Let us fix some x and y that are related by g(x) = y, which is the same as
h(y) = x. Then,

dg

dx
(x) · dh

dy
(y) = 1,

which leads to

fY (y) = fX(x)
/ ∣∣∣∣dg

dx
(x)

∣∣∣∣ .

x

y= g(x)

y 

h(y ) x

y 

h(y )
Event {X < h(Y)} Event {X  >h(Y)}

y= g(x)

Figure 3.23: Calculating the probability P
(
g(X) ≤ y

)
. When g is monotonically

increasing (left figure), the event {g(X) ≤ y} is the same as the event {X ≤ h(y)}.
When g is monotonically decreasing (right figure), the event {g(X) ≤ y} is the
same as the event {X ≥ h(y)}.

Example 3.22. (Continued) To check the PDF formula, let us apply it to
the problem of Example 3.22. In the region of interest, x ∈ [30, 60], we have
h(y) = 180/y, and

dFX

dh

(
h(y)

)
=

1

30
,

∣∣∣∣dh

dy
(y)

∣∣∣∣ =
180

y2
.

Thus, in the region of interest y ∈ [3, 6], the PDF formula yields

fY (y) = fX

(
h(y)

) ∣∣∣∣dh

dy
(y)

∣∣∣∣ =
1

30
· 180

y2
=

6

y2
,

consistently with the expression obtained earlier.

Example 3.26. Let Y = g(X) = X2, where X is a continuous uniform random
variable in the interval (0, 1]. Within this interval, g is monotonic, and its inverse
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is h(y) =
√

y. Thus, for any y ∈ (0, 1], we have∣∣∣∣dh

dy
(y)

∣∣∣∣ =
1

2
√

y
, fX(

√
y) = 1,

and

fY (y) =

{
1

2
√

y
if y ∈ (0, 1],

0 otherwise.

We finally note that if we interpret PDFs in terms of probabilities of small
intervals, the content of our formulas becomes pretty intuitive; see Fig. 3.24.

Functions of Two Random Variables

The two-step procedure that first calculates the CDF and then differentiates to
obtain the PDF also applies to functions of more than one random variable.

Example 3.27. Two archers shoot at a target. The distance of each shot from
the center of the target is uniformly distributed from 0 to 1, independently of the
other shot. What is the PDF of the distance of the losing shot from the center?

Let X and Y be the distances from the center of the first and second shots,
respectively. Let also Z be the distance of the losing shot:

Z = max{X, Y }.

We know that X and Y are uniformly distributed over [0, 1], so that for all z ∈ [0, 1],
we have

P(X ≤ z) = P(Y ≤ z) = z.

Thus, using the independence of X and Y , we have for all z ∈ [0, 1],

FZ(z) = P
(
max{X, Y } ≤ z

)
= P(X ≤ z, Y ≤ z)

= P(X ≤ z)P(Y ≤ z)

= z2.

Differentiating, we obtain

fZ(z) =
{

2z if 0 ≤ z ≤ 1,
0 otherwise.

Example 3.28. Let X and Y be independent random variables that are uniformly
distributed on the interval [0, 1]. What is the PDF of the random variable Z =
Y/X?



Sec. 3.6 Derived Distributions 49

x

g(x)

y 

[x, x+δ1]

[y, y+δ2]

slope 
dg
dx

(x)

Figure 3.24: Illustration of the PDF formula for a monotonically increasing
function g. Consider an interval [x, x + δ1], where δ1 is a small number. Under
the mapping g, the image of this interval is another interval [y, y + δ2]. Since
(dg/dx)(x) is the slope of g, we have

δ2

δ1
≈ dg

dx
(x),

or in terms of the inverse function,

δ1

δ2
≈ dh

dy
(y),

We now note that the event {x ≤ X ≤ x + δ1} is the same as the event {y ≤ Y ≤
y + δ2}. Thus,

fY (y)δ2 ≈ P(y ≤ Y ≤ y + δ2)

= P(x ≤ X ≤ x + δ1)

≈ fX(x)δ1.

We move δ1 to the left-hand side and use our earlier formula for the ratio δ2/δ1,
to obtain

fY (y)
dg

dx
(x) = fX(x).

Alternatively, if we move δ2 to the right-hand side and use the formula for δ1/δ2,
we obtain

fY (y) = fX

(
h(y)

)
· dh

dy
(y).

We will find the PDF of Z by first finding its CDF and then differentiating.
We consider separately the cases 0 ≤ z ≤ 1 and z > 1. As shown in Fig. 3.25, we
have

FZ(z) = P
(

Y

X
≤ z

)
=

{
z/2 if 0 ≤ z ≤ 1,
1 − 1/(2z) if z > 1,
0 otherwise.
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By differentiating, we obtain

fZ(z) =

{
1/2 if 0 ≤ z ≤ 1,
1/(2z2) if z > 1,
0 otherwise.

z 

0

Slope z 

x 

y 

0

Slope z 

x 

y z 

1

1

1

1

1

Figure 3.25: The calculation of the CDF of Z = Y/X in Example 3.28. The
value P(Y/X ≤ z) is equal to the shaded subarea of the unit square. The figure
on the left deals with the case where 0 ≤ z ≤ 1 and the figure on the right refers
to the case where z > 1.

Example 3.29. Romeo and Juliet have a date at a given time, and each, inde-
pendently, will be late by an amount of time that is exponentially distributed with
parameter λ. What is the PDF of the difference between their times of arrival?

Let us denote by X and Y the amounts by which Romeo and Juliet are late,
respectively. We want to find the PDF of Z = X − Y , assuming that X and Y are
independent and exponentially distributed with parameter λ. We will first calculate
the CDF FZ(z) by considering separately the cases z ≥ 0 and z < 0 (see Fig. 3.26).

For z ≥ 0, we have (see the left side of Fig. 3.26)

FZ(z) = P(X − Y ≤ z)

= 1 − P(X − Y > z)

= 1 −
∫ ∞

0

(∫ ∞

z+y

fX,Y (x, y) dx

)
dy

= 1 −
∫ ∞

0

λe−λy

(∫ ∞

z+y

λe−λx dx

)
dy

= 1 −
∫ ∞

0

λe−λye−λ(z+y) dy

= 1 − e−λz

∫ ∞

0

λe−2λy dy

= 1 − 1

2
e−λz.
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z 0 z 0

Line x - y = z Line x - y = z 

x 

y 

x 

y

Figure 3.26: The calculation of the CDF of Z = X −Y in Example 3.29. To
obtain the value P(X − Y > z) we must integrate the joint PDF fX,Y (x, y)
over the shaded area in the above figures, which correspond to z ≥ 0 (left
side) and z < 0 (right side).

For the case z < 0, we can use a similar calculation, but we can also argue
using symmetry. Indeed, the symmetry of the situation implies that the random
variables Z = X − Y and −Z = Y − X have the same distribution. We have

FZ(z) = P(Z ≤ z) = P(−Z ≥ −z) = P(Z ≥ −z) = 1 − FZ(−z).

With z < 0, we have −z ≥ 0 and using the formula derived earlier,

FZ(z) = 1 − FZ(−z) = 1 −
(
1 − 1

2
e−λ(−z)

)
=

1

2
eλz.

Combining the two cases z ≥ 0 and z < 0, we obtain

FZ(z) =




1 − 1

2
e−λz if z ≥ 0,

1

2
eλz if z < 0,

We now calculate the PDF of Z by differentiating its CDF. We obtain

fZ(z) =




λ

2
e−λz if z ≥ 0,

λ

2
eλz if z < 0,

or

fZ(z) =
λ

2
e−λ|z|.

This is known as a two-sided exponential PDF, also known as the Laplace
PDF.
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3.7 SUMMARY AND DISCUSSION

Continuous random variables are characterized by PDFs and arise in many ap-
plications. PDFs are used to calculate event probabilities. This is similar to
the use of PMFs for the discrete case, except that now we need to integrate
instead of adding. Joint PDFs are similar to joint PMFs and are used to de-
termine the probability of events that are defined in terms of multiple random
variables. Finally, conditional PDFs are similar to conditional PMFs and are
used to calculate conditional probabilities, given the value of the conditioning
random variable.

We have also introduced a few important continuous probability laws and
derived their mean and variance. A summary is provided in the table that
follows.

Summary of Results for Special Random Variables

Continuous Uniform Over [a, b]:

fX(x) =

{ 1
b − a

if a ≤ x ≤ b,

0 otherwise,

E[X] =
a + b

2
, var(X) =

(b − a)2

12
.

Exponential with Parameter λ:

fX(x) =
{

λe−λx if x ≥ 0,
0 otherwise,

FX(x) =
{

1 − e−λx if x ≥ 0,
0 otherwise,

E[X] =
1
λ

, var(X) =
1
λ2

.

Normal with Parameters µ and σ2:

fX(x) =
1√
2πσ

e−(x−µ)2/2σ2
,

E[X] = µ, var(X) = σ2.


