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In this chapter, we develop a number of more advanced topics. We introduce
methods that are useful in:

(a) dealing with the sum of independent random variables, including the case
where the number of random variables is itself random;

(b) addressing problems of estimation or prediction of an unknown random
variable on the basis of observed values of other random variables.

With these goals in mind, we introduce a number of tools, including transforms
and convolutions, and refine our understanding of the concept of conditional
expectation.

4.1 TRANSFORMS

In this section, we introduce the transform associated with a random variable.
The transform provides us with an alternative representation of its probability
law (PMF or PDF). It is not particularly intuitive, but it is often convenient for
certain types of mathematical manipulations.

The transform of the distribution of a random variable X (also referred
to as the moment generating function of X) is a function MX(s) of a free
parameter s, defined by

MX(s) = E[esX ].

The simpler notation M(s) can also be used whenever the underlying random
variable X is clear from the context. In more detail, when X is a discrete random
variable, the corresponding transform is given by

M(s) =
∑

x

esxpX(x),

while in the continuous case, we have†

M(s) =
∫ ∞

−∞
esxfX(x) dx.

Example 4.1. Let

pX(x) =

{
1/2, if x = 2,
1/6, if x = 3,
1/3, if x = 5.

† The reader who is familiar with Laplace transforms may recognize that the trans-

form associated with a continuous random variable is essentially the same as the Laplace

transform of its PDF, the only difference being that Laplace transforms usually involve

e−sx rather than esx. For the discrete case, a variable z is sometimes used in place

of es and the resulting transform M(z) =
∑

x
zxpX(x) is known as the z-transform.

However, we will not be using z-transforms in this book.
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Then, the corresponding transform is

M(s) =
1

2
e2s +

1

6
e3s +

1

3
e5s

(see Fig. 4.1).
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Figure 4.1: The PMF and the corresponding transform for Example 4.1. The
transform M(s) consists of the weighted sum of the three exponentials shown.
Note that at s = 0, the transform takes the value 1. This is generically true since

M(0) =
∑

x

e0·xpX(x) =
∑

x

pX(x) = 1.

Example 4.2. The Transform of a Poisson Random Variable. Consider a
Poisson random variable X with parameter λ:

pX(x) =
λxe−λ

x!
, x = 0, 1, 2, . . .

The corresponding transform is given by

M(s) =

∞∑
x=0

esx λxe−λ

x!
.



4 Further Topics on Random Variables and Expectations Chap. 4

We let a = esλ and obtain

M(s) = e−λ

∞∑
x=0

ax

x!
= e−λea = ea−λ = eλ(es−1).

Example 4.3. The Transform of an Exponential Random Variable. Let
X be an exponential random variable with parameter λ:

fX(x) = λe−λx, x ≥ 0.

Then,

M(s) =λ

∫ ∞

0

esxe−λx dx

=λ

∫ ∞

0

e(s−λ)x dx

=λ
e(s−λ)x

s − λ

∣∣∣∣
∞

0

(if s < λ)

=
λ

λ − s
.

The above calculation and the formula for M(s) is correct only if the integrand
e(s−λ)x decays as x increases, which is the case if and only if s < λ; otherwise, the
integral is infinite.

It is important to realize that the transform is not a number but rather a
function of a free variable or parameter s. Thus, we are dealing with a transfor-
mation that starts with a function, e.g., a PDF fX(x) (which is a function of a
free variable x) and results in a new function, this time of a real parameter s.
Strictly speaking, M(s) is only defined for those values of s for which E[esX ] is
finite, as noted in the preceding example.

Example 4.4. The Transform of a Linear Function of a Random Variable.
Let MX(s) be the transform associated with a random variable X. Consider a new
random variable Y = aX + b. We then have

MY (s) = E[es(aX+b)] = esbE[esaX ] = esbMX(sa).

For example, if X is exponential with parameter λ = 1, so that MX(s) = 1/(1− s),
and if Y = 2X + 3, then

MY (s) = e3s 1

1 − 2s
.
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Example 4.5. The Transform of a Normal Random Variable. Let X
be a normal random variable with mean µ and variance σ2. To calculate the
corresponding transform, we first consider the special case of the standard normal
random variable Y , where µ = 0 and σ2 = 1, and then use the formula of the
preceding example. The PDF of the standard normal is

fY (y) =
1√
2π

e−y2/2,

and its transform is

MY (s) =

∫ ∞

−∞

1√
2π

e−y2/2 esy dy

=
1√
2π

∫ ∞

−∞
e−(y2/2)+sydy

= es2/2 1√
2π

∫ ∞

−∞
e−(y2/2)+sy−(s2/2)dy

= es2/2 1√
2π

∫ ∞

−∞
e−(y−s)2/2dy

= es2/2,

where the last equality follows by using the normalization property of a normal
PDF with mean s and unit variance.

A general normal random variable with mean µ and variance σ2 is obtained
from the standard normal via the linear transformation

X = σY + µ.

The transform of the standard normal is MY (s) = es2/2, as verified above. By
applying the formula of Example 4.4, we obtain

MX(s) = esµMY (sσ) = e
σ2s2

2 +µs.

From Transforms to Moments

The reason behind the alternative name “moment generating function” is that
the moments of a random variable are easily computed once a formula for the
associated transform is available. To see this, let us take the derivative of both
sides of the definition

M(s) =
∫ ∞

−∞
esxfX(x) dx,
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with respect to s. We obtain

d

ds
M(s) =

d

ds

∫ ∞

−∞
esxfX(x) dx

=
∫ ∞

−∞

d

ds
esxfX(x) dx

=
∫ ∞

−∞
xesxfX(x) dx.

This equality holds for all values of s. By considering the special case where
s = 0, we obtain†

d

ds
M(s)

∣∣∣∣
s=0

=
∫ ∞

−∞
xfX(x) dx = E[X].

More generally, if we differentiate n times the function M(s) with respect to s,
a similar calculation yields

dn

dsn
M(s)

∣∣∣∣
s=0

=
∫ ∞

−∞
xnfX(x) dx = E[Xn].

Example 4.6. We saw earlier (Example 4.1) that the PMF

pX(x) =

{
1/2, if x = 2,
1/6, if x = 3,
1/3, if x = 5,

has the transform

M(s) =
1

2
e2s +

1

6
e3s +

1

3
e5s.

Thus,

E[X] =
d

ds
M(s)

∣∣∣
s=0

=
1

2
2e2s +

1

6
3e3s +

1

3
5e5s

∣∣∣
s=0

=
1

2
· 2 +

1

6
· 3 +

1

3
· 5

=
19

6
.

† This derivation involves an interchange of differentiation and integration. The
interchange turns out to be justified for all of the applications to be considered in
this book. Furthermore, the derivation remains valid for general random variables,
including discrete ones. In fact, it could be carried out more abstractly, in the form

d

ds
M(s) =

d

ds
E[esX ] = E

[
d

ds
esX

]
= E[XesX ],

leading to the same conclusion.
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Also,

E[X2] =
d2

ds2
M(s)

∣∣∣∣
s=0

=
1

2
4e2s +

1

6
9e3s +

1

3
25e5s

∣∣∣
s=0

=
1

2
· 4 +

1

6
· 9 +

1

3
· 25

=
71

6
.

For an exponential random variable with PDF

fX(x) = λe−λx, x ≥ 0,

we found earlier that

M(s) =
λ

λ − s
.

Thus,
d

ds
M(s) =

λ

(λ − s)2
,

d2

ds2
M(s) =

2λ

(λ − s)3
.

By setting s = 0, we obtain

E[X] =
1

λ
, E[X2] =

2

λ2
,

which agrees with the formulas derived in Chapter 3.

Inversion of Transforms

A very important property of transforms is the following.

Inversion Property

The transform MX(s) completely determines the probability law of the ran-
dom variable X. In particular, if MX(s) = MY (s) for all s, then the random
variables X and Y have the same probability law.

This property is a rather deep mathematical fact that we will use fre-
quently.† There exist explicit formulas that allow us to recover the PMF or
PDF of a random variable starting from the associated transform, but they are
quite difficult to use. In practice, transforms are usually inverted by “pattern
matching,” based on tables of known distribution-transform pairs. We will see
a number of such examples shortly.

† In fact, the probability law of a random variable is completely determined even

if we only know the transform M(s) for values of s in some interval of positive length.
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Example 4.7. We are told that the transform associated with a random variable
X is

M(s) =
1

4
e−s +

1

2
+

1

8
e4s +

1

8
e5s.

Since M(s) is a sum of terms of the form esx, we can compare with the general
formula

M(s) =
∑

x

esxpX(x),

and infer that X is a discrete random variable. The different values that X can
take can be read from the corresponding exponents and are −1, 0, 4, and 5. The
probability of each value x is given by the coefficient multiplying the corresponding
esx term. In our case, P(X = −1) = 1/4, P(X = 0) = 1/2, P(X = 4) = 1/8,
P(X = 5) = 1/8.

Generalizing from the last example, the distribution of a finite-valued dis-
crete random variable can be always found by inspection of the corresponding
transform. The same procedure also works for discrete random variables with
an infinite range, as in the example that follows.

Example 4.8. The Transform of a Geometric Random Variable. We are
told that the transform associated with random variable X is of the form

M(s) =
pes

1 − (1 − p)es
,

where p is a constant in the range 0 < p < 1. We wish to find the distribution of
X. We recall the formula for the geometric series:

1

1 − α
= 1 + α + α2 + · · · ,

which is valid whenever |α| < 1. We use this formula with α = (1 − p)es, and for s
sufficiently close to zero so that (1 − p)es < 1. We obtain

M(s) = pes
(
1 + (1 − p)es + (1 − p)2e2s + (1 − p)3e3s + · · ·

)
.

As in the previous example, we infer that this is a discrete random variable that
takes positive integer values. The probability P(X = k) is found by reading the
coefficient of the term eks. In particular, P(X = 1) = p, P(X = 2) = p(1− p), etc.,
and

P(X = k) = p(1 − p)k−1, k = 1, 2, . . .

We recognize this as the geometric distribution with parameter p.
Note that

d

ds
M(s) =

pes

1 − (1 − p)es
+

(1 − p)pes

(1 − (1 − p)es)2
.
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If we set s = 0, the above expression evaluates to 1/p, which agrees with the formula
for E[X] derived in Chapter 2.

Example 4.9. The Transform of a Mixture of Two Distributions. The
neighborhood bank has three tellers, two of them fast, one slow. The time to assist
a customer is exponentially distributed with parameter λ = 6 at the fast tellers,
and λ = 4 at the slow teller. Jane enters the bank and chooses a teller at random,
each one with probability 1/3. Find the PDF of the time it takes to assist Jane and
its transform.

We have

fX(x) =
2

3
· 6e−6x +

1

3
· 4e−4x, x ≥ 0.

Then,

M(s) =

∫ ∞

0

esx
(

2

3
6e−6x +

1

3
4e−4x

)
dx

=
2

3

∫ ∞

0

esx6e−6x dx +
1

3

∫ ∞

0

esx4e−4x dx

=
2

3
· 6

6 − s
+

1

3
· 4

4 − s
(for s < 4).

More generally, let X1, . . . , Xn be continuous random variables with PDFs
fX1 , . . . fXn , and let Y be a random variable, which is equal to Xi with probability
pi. Then,

fY (y) = p1fX1(y) + · · · + pnfXn(y),

and

MY (s) = p1MX1(s) + · · · + pnMXn(s).

The steps in this problem can be reversed. For example, we may be told that
the transform associated with a random variable Y is of the form

1

2
· 1

2 − s
+

3

4
· 1

1 − s
.

We can then rewrite it as

1

4
· 2

2 − s
+

3

4
· 1

1 − s
,

and recognize that Y is the mixture of two exponential random variables with
parameters 2 and 1, which are selected with probabilities 1/4 and 3/4, respectively.
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Sums of Independent Random Variables

Transform methods are particularly convenient when dealing with a sum of ran-
dom variables. This is because it turns out that addition of independent random
variables corresponds to multiplication of transforms, as we now show.

Let X and Y be independent random variables, and let W = X + Y . The
transform associated with W is, by definition,

MW (s) = E[esW ] = E[es(X+Y )] = E[esXesY ].

Consider a fixed value of the parameter s. Since X and Y are independent,
esX and esY are independent random variables. Hence, the expectation of their
product is the product of the expectations, and

MW (s) = E[esX ]E[esY ] = MX(s)MY (s).

By the same argument, if X1, . . . , Xn is a collection of independent random
variables, and

W = X1 + · · · + Xn,

then
MW (s) = MX1(s) · · ·MXn(s).

Example 4.10. The Transform of the Binomial. Let X1, . . . , Xn be inde-
pendent Bernoulli random variables with a common parameter p. Then,

MXi(s) = (1 − p)e0s + pe1s = 1 − p + pes, for all i.

The random variable Y = X1 + · · · + Xn is binomial with parameters n and p. Its
transform is given by

MY (s) =
(
1 − p + pes

)n
.

Example 4.11. The Sum of Independent Poisson Random Variables is
Poisson. Let X and Y be independent Poisson random variables with means λ
and µ, respectively, and let W = X + Y . Then,

MX(s) = eλ(es−1), MY (s) = eµ(es−1),

and
MW (s) = MX(s)MY (s) = eλ(es−1)eµ(es−1) = e(λ+µ)(es−1).

Thus, W has the same transform as a Poisson random variable with mean λ + µ.
By the uniqueness property of transforms, W is Poisson with mean λ + µ.
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Example 4.12. The Sum of Independent Normal Random Variables is
Normal. Let X and Y be independent normal random variables with means µx,
µy, and variances σ2

x, σ2
y, respectively. Let W = X + Y . Then,

MX(s) = e
σ2

xs2

2 +µxs, MY (s) = e
σ2

ys2

2 +µys,

and

MW (s) = e
(σ2

x+σ2
y)s2

2 +(µx+µy)s.

Thus, W has the same transform as a normal random variable with mean µx + µy

and variance σ2
x +σ2

y. By the uniqueness property of transforms, W is normal with
these parameters.

Summary of Transforms and their Properties

• The transform associated with the distribution of a random variable
X is given by

MX(s) = E[esX ] =




∑
x

esxpX(x), x discrete,∫ ∞

−∞
esxfX(x) dx, x continuous.

• The distribution of a random variable is completely determined by the
corresponding transform.

• Moment generating properties:

MX(0) = 1,
d

ds
MX(s)

∣∣∣∣
s=0

= E[X],
dn

dsn
MX(s)

∣∣∣∣
s=0

= E[Xn].

• If Y = aX + b, then MY (s) = esbMX(as).

• If X and Y are independent, then MX+Y (s) = MX(s)MY (s).

We have derived formulas for the transforms of a few common random
variables. Such formulas can be derived with a moderate amount of algebra for
many other distributions. Some of the most useful ones are summarized in the
tables that follow.

Transforms of Joint Distributions

If two random variables X and Y are described by some joint distribution (e.g., a
joint PDF), then each one is associated with a transform MX(s) or MY (s). These
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Transforms for Common Discrete Random Variables

Bernoulli(p)

pX(k) =
{

p, if k = 1,
1 − p, if k = 0. MX(s) = 1 − p + pes.

Binomial(n, p)

pX(k) =
(

n

k

)
pk(1 − p)n−k, k = 0, 1, . . . , n.

MX(s) = (1 − p + pes)n.

Geometric(p)

pX(k) = p(1 − p)k−1, k = 1, 2, . . . MX(s) =
pes

1 − (1 − p)es
.

Poisson(λ)

pX(k) =
e−λλk

k!
, k = 0, 1, . . . MX(s) = eλ(es−1).

Uniform(a, b)

pX(k) =
1

b − a + 1
, k = a, a + 1, . . . , b.

MX(s) =
eas

b − a + 1
e(b−a+1)s − 1

es − 1
.

are the transforms of the marginal distributions and do not convey information on
the dependence between the two random variables. Such information is contained
in a multivariate transform, which we now define.

Consider n random variables X1, . . . , Xn related to the same experiment.
Let s1, . . . , sn be scalar free parameters. The associated multivariate transform
is a function of these n parameters and is defined by

MX1,...,Xn(s1, . . . , sn) = E
[
esX1+···+snXn

]
.

The inversion property of transforms discussed earlier extends to the multi-
variate case. That is, if Y1, . . . , Yn is another set of random variables and
MX1,...,Xn(s1, . . . , sn), MY1,...,Yn(s1, . . . , sn) are the same functions of s1, . . . , sn,
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Transforms for Common Continuous Random Variables

Uniform(a, b)

fX(x) =
1

b − a
, a ≤ x ≤ b. MX(s) =

1
b − a

esb − esa

s
.

Exponential(λ)

fX(x) = λe−λx, x ≥ 0. MX(s) =
λ

λ − s
, (s > λ).

Normal(µ, σ2)

fX(x) =
1

σ
√

2π
e−(x−µ)2/2σ2

, −∞ < x < ∞. MX(s) = e
σ2s2

2 +µs.

then the joint distribution of X1, . . . , Xn is the same as the joint distribution of
Y1, . . . , Yn.

4.2 SUMS OF INDEPENDENT RANDOM VARIABLES
— CONVOLUTIONS

If X and Y are independent random variables, the distribution of their sum
W = X + Y can be obtained by computing and then inverting the transform
MW (s) = MX(s)MY (s). But it can also be obtained directly, using the method
developed in this section.

The Discrete Case

Let W = X+Y , where X and Y are independent integer-valued random variables
with PMFs pX(x) and pY (y). Then, for any integer w,

pW (w) =P(X + Y = w)

=
∑

(x,y): x+y=w

P(X = x and Y = y)

=
∑

x

P(X = x and Y = w − x)

=
∑

x

pX(x)pY (w − x).
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(0,3)

Figure 4.2: The probability pW (3) that X+Y = 3 is the sum of the probabilities
of all pairs (x, y) such that x + y = 3, which are the points indicated in the
figure. The probability of a generic such point is of the form pX,Y (x, 3 − x) =
pX(x)pY (3 − x).

The resulting PMF pW (w) is called the convolution of the PMFs of X and Y .
See Fig. 4.2 for an illustration.

Example 4.13. Let X and Y be independent and have PMFs given by

pX(x) =

{
1
3

if x = 1, 2, 3,
0 otherwise,

pY (y) =




1
2

if x = 0,
1
3

if x = 1,
1
6

if x = 2,
0 otherwise.

To calculate the PMF of W = X + Y by convolution, we first note that the range
of possible values of w are the integers from the range [1, 5]. Thus we have

pW (w) = 0 if w �= 1, 2, 3, 4, 5.

We calculate pW (w) for each of the values w = 1, 2, 3, 4, 5 using the convolution
formula. We have

pW (1) =
∑

x

pX(x)pY (1 − x) = pX(1) · pY (0) =
1

3
· 1

2
=

1

6
,

where the second equality above is based on the fact that for x �= 1 either pX(x) or
pY (1 − x) (or both) is zero. Similarly, we obtain

pW (2) = pX(1) · pY (1) + pX(2) · pY (0) =
1

3
· 1

3
+

1

3
· 1

2
=

5

18
,

pW (3) = pX(1) · pY (2) + pX(2) · pY (1) + pX(3) · pY (0) =
1

3
· 1

6
+

1

3
· 1

3
+

1

3
· 1

2
=

1

3
,

pW (4) = pX(2) · pY (2) + pX(3) · pY (1) =
1

3
· 1

6
+

1

3
· 1

3
=

1

6
,

pW (5) = pX(3) · pY (2) =
1

3
· 1

6
=

1

18
.
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The Continuous Case

Let X and Y be independent continuous random variables with PDFs fX(x) and
fY (y). We wish to find the PDF of W = X + Y . Since W is a function of two
random variables X and Y , we can follow the method of Chapter 3, and start
by deriving the CDF FW (w) of W . We have

FW (w) = P(W ≤ w)
= P(X + Y ≤ w)

=
∫ ∞

x=−∞

∫ w−x

y=−∞
fX(x)fY (y) dy dx

=
∫ ∞

x=−∞
fX(x)

[∫ w−x

y=−∞
fY (y) dy

]
dx

=
∫ ∞

x=−∞
fX(x)FY (w − x) dx.

The PDF of W is then obtained by differentiating the CDF:

fW (w) =
dFW

dw
(w)

=
d

dw

∫ ∞

x=−∞
fX(x)FY (w − x) dx

=
∫ ∞

x=−∞
fX(x)

dFY

dw
(w − x) dx

=
∫ ∞

x=−∞
fX(x)fY (w − x) dx.

This formula is entirely analogous to the formula for the discrete case, except
that the summation is replaced by an integral and the PMFs are replaced by
PDFs. For an intuitive understanding of this formula, see Fig. 4.3.

Example 4.14. The random variables X and Y are independent and uniformly
distributed in the interval [0, 1]. The PDF of W = X + Y is

fW (w) =

∫ ∞

−∞
fX(x)fY (w − x) dx.

The integrand fX(x)fY (w − x) is nonzero (and equal to 1) for 0 ≤ x ≤ 1 and
0 ≤ w − x ≤ 1. Combining these two inequalities, the integrand is nonzero for
max{0, w − 1} ≤ x ≤ min{1, w}. Thus,

fW (w) =
{

min{1, w} − max{0, w − 1}, 0 ≤ w ≤ 2,
0, otherwise,



16 Further Topics on Random Variables and Expectations Chap. 4

x 

y 

x + y = w

w 

w 

x + y = w + δ

w + δ

Figure 4.3: Illustration of the convolution formula for the case of continuous
random variables (compare with Fig. 4.2). For small δ, the probability of the
strip indicated in the figure is P(w ≤ X + Y ≤ w + δ) ≈ fW (w) · δ. Thus,

fW (w) · δ =P(w ≤ X + Y ≤ w + δ)

=

∫ ∞

x=−∞

∫ w−x+δ

y=w−x

fX(x)fY (y) dy dx

≈
∫ ∞

x=−∞
fX(x)fY (w − x)δ dx.

The desired formula follows by canceling δ from both sides.

w 

fW(w)

2

1

Figure 4.4: The PDF of the sum of two independent uniform random variables
in [0, 1].

which has the triangular shape shown in Fig. 4.4.

The calculation in the last example was based on a literal application of the
convolution formula. The most delicate step was to determine the correct limits
for the integration. This is often tedious and error prone, but can be bypassed
using a graphical method described next.
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Graphical Calculation of Convolutions

We will use a dummy variable t as the argument of the different functions in-
volved in this discussion; see also Fig. 4.5. Consider a PDF fX(t) which is zero
outside the range a ≤ t ≤ b and a PDF fY (t) which is zero outside the range
c ≤ t ≤ d. Let us fix a value w, and plot fY (w − t) as a function of t. This plot
has the same shape as the plot of fY (t) except that it is first “flipped” and then
shifted by an amount w. (If w > 0, this is a shift to the right, if w < 0, this is a
shift to the left.) We then place the plots of fX(t) and fY (w − t) on top of each
other. The value of fW (w) is equal to the integral of the product of these two
plots. By varying the amount w by which we are shifting, we obtain fW (w) for
any w.

w  − cw  − d

a b

fX(t)

c d

fY(t)

− c− d

a b

fY(w − t) fY(− t)

t t 

t t 

t 

fY(w − t)fX(t)

Figure 4.5: Illustration of the convolution calculation. For the value of w under
consideration, fW (w) is equal to the integral of the function shown in the last
plot.

4.3 CONDITIONAL EXPECTATION AS A RANDOM VARIABLE

The value of the conditional expectation E[X |Y = y] of a random variable X
given another random variable Y depends on the realized experimental value y
of Y . This makes E[X |Y ] a function of Y , and therefore a random variable. In
this section, we study the expectation and variance of E[X |Y ]. In the process,
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we obtain some useful formulas (the law of iterated expectations and the
law of conditional variances) that are often convenient for the calculation of
expected values and variances.

Recall that the conditional expectation E[X |Y = y] is defined by

E[X |Y = y] =
∑

x

xpX|Y (x | y), (discrete case),

and
E[X |Y = y] =

∫ ∞

−∞
xfX|Y (x | y) dx, (continuous case).

Once a value of y is given, the above summation or integration yields a numerical
value for E[X |Y = y].

Example 4.15. Let the random variables X and Y have a joint PDF which
is equal to 2 for (x, y) belonging to the triangle indicated in Fig. 4.6(a), and zero
everywhere else. In order to compute E[X |Y = y], we first need to obtain the
conditional density of X given Y = y.

x 

y 

1

1

fX,Y(x ,y) = 2

x 1

fX|Y(x |y )

1 − y 

1 − y 

1

(a) (b)

1 − y 

y 

Figure 4.6: (a) The joint PDF in Example 4.15. (b) The conditional density
of X.

We have

fY (y) =

∫ ∞

−∞
fX,Y (x, y) dx =

∫ 1−y

0

2 dx = 2(1 − y), 0 ≤ y ≤ 1,

and

fX|Y (x | y) =
fX,Y (x, y)

fY (y)
=

1

1 − y
, 0 ≤ x ≤ 1 − y.

The conditional density is shown in Fig. 4.6(b).
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Intuitively, since the joint PDF is constant, the conditional PDF (which is a
“slice” of the joint, at some fixed y) is also a constant. Therefore, the conditional
PDF must be a uniform distribution. Given that Y = y, X ranges from 0 to 1− y.
Therefore, for the PDF to integrate to 1, its height must be equal to 1/(1 − y), in
agreement with Fig. 4.6(b).

For y > 1 or y < 0, the conditional PDF is undefined, since these values of
y are impossible. For y = 1, X must be equal to 0, with certainty, and E[X |Y =
1] = 0.

For 0 ≤ y < 1, the conditional mean E[X |Y = y] is the expectation of the
uniform PDF in Fig. 4.6(b), and we have

E[X |Y = y] =
1 − y

2
, 0 ≤ y < 1.

Since E[X |Y = 1] = 0, the above formula is also valid when y = 1. The conditional
expectation is undefined when y is outside [0, 1].

For any number y, E[X |Y = y] is also a number. As y varies, so does
E[X |Y = y], and we can therefore view E[X |Y = y] as a function of y. Since
y is the experimental value of the random variable Y , we are dealing with a
function of a random variable, hence a new random variable. More precisely, we
define E[X |Y ] to be the random variable whose value is E[X |Y = y] when the
outcome of Y is y.

Example 4.15. (continued) We saw that E[X |Y = y] = (1 − y)/2. Hence,
E[X |Y ] is the random variable (1 − Y )/2:

E[X |Y ] =
1 − Y

2
.

Since E[X |Y ] is a random variable, it has an expectation E
[
E[X |Y ]

]
of

its own. Applying the expected value rule, this is given by

E
[
E[X |Y ]

]
=




∑
y

E[X |Y = y]pY (y), Y discrete,

∫ ∞

−∞
E[X |Y = y]fY (y) dy, Y continuous.

Both expressions in the right-hand side should be familiar from Chapters 2 and
3, respectively. By the corresponding versions of the total expectation theorem,
they are equal to E[X]. This brings us to the following conclusion, which is
actually valid for every type of random variable Y (discrete, continuous, mixed,
etc.), as long as X has a well-defined and finite expectation E[X].

Law of iterated expectations: E
[
E[X |Y ]

]
= E[X].
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Example 4.15 (continued) In Example 4.15, we found E[X |Y ] = (1 − Y )/2
[see Fig. 4.6(b)]. Taking expectations of both sides, and using the law of iterated
expectations to evaluate the left-hand side, we obtain E[X] =

(
1−E[Y ]

)
/2. Because

of symmetry, we must have E[X] = E[Y ]. Therefore, E[X] =
(
1 − E[X]

)
/2, which

yields E[X] = 1/3. In a slightly different version of this example, where there is no
symmetry between X and Y , we would use a similar argument to express E[Y ].

Example 4.16. We start with a stick of length �. We break it at a point which
is chosen randomly and uniformly over its length, and keep the piece that contains
the left end of the stick. We then repeat the same process on the stick that we
were left with. What is the expected length of the stick that we are left with, after
breaking twice?

Let Y be the length of the stick after we break for the first time. Let X be
the length after the second time. We have E[X |Y ] = Y/2, since the breakpoint is
chosen uniformly over the length Y of the remaining stick. For a similar reason, we
also have E[Y ] = �/2. Thus,

E[X] = E
[
E[X |Y ]

]
= E

[
Y

2

]
=

E[Y ]

2
=

�

4
.

Example 4.17. Averaging Quiz Scores by Section. A class has n students
and the quiz score of student i is xi. The average quiz score is

m =
1

n

n∑
i=1

xi.

The class consists of S sections, with ns students in section s. The average score
in section s is

ms =
1

ns

∑
stdnts. i in sec. s

xi.

The average score over the whole class can be computed by taking the average score
ms of each section, and then forming a weighted average; the weight given to section
s is proportional to the number of students in that section, and is ns/n. We verify
that this gives the correct result:

S∑
s=1

ns

n
ms =

S∑
s=1

ns

n
· 1

ns

∑
stdnts. i in sec. s

xi

=
1

n

S∑
s=1

∑
stdnts. i in sec. s

xi

=
1

n

n∑
i=1

xi.

= m.
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How is this related to conditional expectations? Consider an experiment in
which a student is selected at random, each student having probability 1/n of being
selected. Consider the following two random variables:

X = quiz score of a student,

Y = section of a student, (Y ∈ {1, . . . , S}).

We then have
E[X] = m.

Conditioning on Y = s is the same as assuming that the selected student is
in section s. Conditional on that event, every student in that section has the same
probability 1/ns of being chosen. Therefore,

E[X |Y = s] =
1

ns

∑
stdnts. i in sec. s

xi = ms.

A randomly selected student belongs to section s with probability ns/n, i.e., P(Y =
s) = ns/n. Hence,

E
[
E[X |Y ]

]
=

S∑
s=1

E[X |Y = s]P(Y = s) =

S∑
s=1

ns

n
ms.

As shown earlier, this is the same as m. Thus, averaging by section can be viewed
as a special case of the law of iterated expectations.

Example 4.18. Forecast Revisions. Let Y be the sales of a company in the
first semester of the coming year, and let X be the sales over the entire year. The
company has constructed a statistical model of sales, and so the joint distribution of
X and Y is assumed to be known. In the beginning of the year, the expected value
E[X] serves as a forecast of the actual sales X. In the middle of the year, the first
semester sales have been realized and the experimental value of the random value Y
is now known. This places us in a new “universe,” where everything is conditioned
on the realized value of Y . We then consider the mid-year revised forecast of yearly
sales, which is E[X |Y ].

We view E[X |Y ] − E[X] as the forecast revision, in light of the mid-year
information. The law of iterated expectations implies that

E
[
E[X |Y ] − E[X]

]
= 0.

This means that, in the beginning of the year, we do not expect our forecast to
be revised in any specific direction. Of course, the actual revision will usually be
positive or negative, but the probabilities are such that it is zero on the average.
This is quite intuitive. For example, if a positive revision was expected, the original
forecast should have been higher in the first place.
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The Conditional Variance

The conditional distribution of X given Y = y has a mean, which is E[X |Y = y],
and by the same token, it also has a variance. This is defined by the same formula
as the unconditional variance, except that everything is conditioned on Y = y:

var(X |Y = y) = E
[(

X − E[X |Y = y]
)2 ∣∣ Y = y

]
.

Note that the conditional variance is a function of the experimental value y of
the random variable Y . Hence, it is a function of a random variable, and is itself
a random variable that will be denoted by var(X |Y ).

Arguing by analogy to the law of iterated expectations, we may conjecture
that the expectation of the conditional variance var(X |Y ) is related to the
unconditional variance var(X). This is indeed the case, but the relation is more
complex.

Law of Conditional Variances:

var(X) = E
[
var(X |Y )

]
+ var

(
E[X |Y ]

)

To verify the law of conditional variances, we start with the identity

X − E[X] =
(
X − E[X |Y ]

)
+

(
E[X |Y ] − E[X]

)
.

We square both sides and then take expectations to obtain

var(X) = E
[(

X − E[X]
)2

]
= E

[(
X − E[X |Y ]

)2
]

+ E
[(

E[X |Y ] − E[X]
)2

]
+ 2E

[(
X − E[X |Y ]

)(
E[X |Y ] − E[X]

)]
.

Using the law of iterated expectations, the first term in the right-hand side of
the above equation can be written as

E
[
E

[(
X − E[X |Y ]

)2 ∣∣ Y
] ]

,

which is the same as E
[
var(X |Y )

]
. The second term is equal to var

(
E[X |Y ]

)
,

since E[X] is the mean of E[X |Y ]. Finally, the third term is zero, as we now
show. Indeed, if we define h(Y ) = 2

(
E[X |Y ] − E[X]

)
, the third term is

E
[(

X − E[X |Y ]
)
h(Y )

]
= E

[
Xh(Y )

]
− E

[
E[X |Y ]h(Y )

]
= E

[
Xh(Y )

]
− E

[
E

[
Xh(Y ) |Y

]]
= E

[
Xh(Y )

]
− E

[
Xh(Y )

]
= 0.
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Example 4.16. (continued) Consider again the problem where we break twice
a stick of length �, at randomly chosen points, with Y being the length of the stick
after the first break and X being the length after the second break. We calculated
the mean of X as �/4, and now let us use the law of conditional variances to calculate
var(X). We have E[X |Y ] = Y/2, so since Y is uniformly distributed between 0
and �,

var
(
E[X |Y ]

)
= var(Y/2) =

1

4
var(Y ) =

1

4
· �2

12
=

�2

48
.

Also, since X is uniformly distributed between 0 and Y , we have

var(X |Y ) =
Y 2

12
.

Thus, since Y is uniformly distributed between 0 and �,

E
[
var(X |Y )

]
=

1

12

∫ �

0

1

�
y2dy =

1

12

1

3�
y3

∣∣�

0
=

�2

36
.

Using now the law of conditional variances, we obtain

var(X) = E
[
var(X |Y )

]
+ var

(
E[X |Y ]

)
=

�2

48
+

�2

36
=

7�2

144
.

Example 4.19. Averaging Quiz Scores by Section – Variance. The setting
is the same as in Example 4.17 and we consider the random variables

X = quiz score of a student,

Y = section of a student, (Y ∈ {1, . . . , S}).

Let ns be the number of students in section s, and let n be the total number of
students. We interpret the different quantities in the formula

var(X) = E
[
var(X |Y )

]
+ var

(
E[X |Y ]

)
.

In this context, var(X |Y = s) is the variance of the quiz scores within sec-
tion s. Then, E

[
var(X |Y )

]
is the average of the section variances. This latter

expectation is an average over the probability distribution of Y , i.e.,

E
[
var(X |Y )

]
=

S∑
s=1

ns

n
var(X |Y = s).

Recall that E[X |Y = s] is the average score in section s. Then, var
(
E[X |Y ]

)
is a measure of the variability of the averages of the different sections. The law of
conditional variances states that the total quiz score variance can be broken into
two parts:
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(a) The average score variability E
[
var(X |Y )

]
within individual sections.

(b) The variability var
(
E[X |Y ]

)
between sections.

We have seen earlier that the law of iterated expectations (in the form of the
total expectation theorem) can be used to break down complicated expectation
calculations, by considering different cases. A similar method applies to variance
calculations.

Example 4.20. Computing Variances by Conditioning. Consider a con-
tinuous random variable X with the PDF given in Fig. 4.7. We define an auxiliary
random variable Y as follows:

Y =
{

1, if x < 1,
2, of x ≥ 1.

Here, E[X |Y ] takes the values 1/2 and 3/2, with probabilities 1/3 and 2/3, respec-
tively. Thus, the mean of E[X |Y ] is 7/6. Therefore,

var
(
E[X |Y ]

)
=

1

3

(
1

2
− 7

6

)2

+
2

3

(
3

2
− 7

6

)2

=
2

9
.

x 1

fX(x )

2

1/3

2/3

Figure 4.7: The PDF in Example 4.20.

Conditioned on either value of Y , X is uniformly distributed on a unit length
interval. Therefore, var(X |Y = y) = 1/12 for each of the two possible values of y,
and E

[
var(X |Y )

]
= 1/12. Putting everything together, we obtain

var(X) = E
[
var(X |Y )

]
+ var

(
E[X |Y ]

)
=

1

12
+

2

9
=

11

36
.
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We summarize the main points in this section.

The Mean and Variance of a Conditional Expectation

• E[X |Y = y] is a number, whose value depends on y.

• E[X |Y ] is a function of the random variable Y , hence a random vari-
able. Its experimental value is E[X |Y = y] whenever the experimental
value of Y is y.

• E
[
E[X |Y ]

]
= E[X] (law of iterated expectations).

• var(X |Y ) is a random variable whose experimental value is var(X |Y =
y), whenever the experimental value of Y is y.

• var(X) = E
[
var(X |Y )

]
+ var

(
E[X |Y ]

)
.

4.4 SUM OF A RANDOM NUMBER OF INDEPENDENT RANDOM
VARIABLES

In our discussion so far of sums of random variables, we have always assumed
that the number of variables in the sum is known and fixed, i.e., it is nonrandom.
In this section we will consider the case where the number of random variables
being added is itself random. In particular, we consider the sum

Y = X1 + · · · + XN ,

where N is a random variable that takes nonnegative integer values, and X1, X2, . . .
are identically distributed random variables. We assume that N, X1, X2, . . . are
independent, meaning that any finite subcollection of these random variables are
independent.

We first note that the randomness of N can affect significantly the character
of the random sum Y = X1 + · · · + XN . In particular, the PMF/PDF of Y =∑N

i=1 Yi is much different from the PMF/PDF of the sum Y =
∑E[N ]

i=1 Yi where
N has been replaced by its expected value (assuming that E[N ] is integer). For
example, let Xi be uniformly distributed in the interval [0, 1], and let N be
equal to 1 or 3 with probability 1/2 each. Then the PDF of the random sum Y
takes values in the interval [0, 3], whereas if we replace N by its expected value
E[N ] = 2, the sum Y = X1 +X2 takes values in the interval [0, 2]. Furthermore,
using the total probability theorem, we see that the PDF of Y is a mixture of
the uniform PDF and the PDF of X1 + X2 + X3, and has considerably different
character than the triangular PDF of Y = X1 + X2 which is given in Fig. 4.4.

Let us denote by µ and σ2 the common mean and the variance of the Xi.
We wish to derive formulas for the mean, variance, and the transform of Y . The
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method that we follow is to first condition on the event N = n, under which we
have the sum of a fixed number of random of random variables, a case that we
already know how to handle.

Fix some number n. The random variable X1 + · · ·+ Xn is independent of
N and, therefore, independent of the event {N = n}. Hence,

E[Y |N = n] = E[X1 + · · · + XN |N = n]
= E[X1 + · · · + Xn |N = n]
= E[X1 + · · · + Xn]
= nµ.

This is true for every nonnegative integer n and, therefore,

E[Y |N ] = Nµ.

Using the law of iterated expectations, we obtain

E[Y ] = E
[
E[Y |N ]

]
= E[µN ] = µE[N ].

Similarly,

var(Y |N = n) = var(X1 + · · · + XN |N = n)
= var(X1 + · · · + Xn)
= nσ2.

Since this is true for every nonnegative integer n, the random variable var(Y |N)
is equal to Nσ2. We now use the law of conditional variances to obtain

var(Y ) = E
[
var(Y |N)

]
+ var

(
E[Y |N ]

)
= E[N ]σ2 + var(Nµ)
= E[N ]σ2 + µ2var(N).

The calculation of the transform proceeds along similar lines. The trans-
form associated with Y , conditional on N = n, is E[esY |N = n]. However, condi-
tioned on N = n, Y is the sum of the independent random variables X1, . . . , Xn,
and

E[esY |N = n]= E
[
esX1 · · · esXN |N = n

]
= E

[
esX1 · · · esXn

]
= E[esX1 ] · · ·E[esXn ] =

(
MX(s)

)n
.

Using the law of iterated expectations, the (unconditional) transform associated
with Y is

E[esY ] = E
[
E[esY |N ]

]
= E

[(
MX(s)

)N]
=

∞∑
n=0

(MX(s))npN (n).
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This is similar to the transform MN (s) = E[esN ] associated with N , except that
es is replaced by MX(s).

Example 4.21. A remote village has three gas stations, and each one of them
is open on any given day with probability 1/2, independently of the others. The
amount of gas available in each gas station is unknown and is uniformly distributed
between 0 and 1000 gallons. We wish to characterize the distribution of the total
amount of gas available at the gas stations that are open.

The number N of open gas stations is a binomial random variable with p =
1/2 and the corresponding transform is

MN (s) = (1 − p + pes)3 =
1

8
(1 + es)3.

The transform MX(s) associated with the amount of gas available in an open gas
station is

MX(s) =
e1000s − 1

1000s
.

The transform associated with the total amount Y available is the same as MN (s),
except that each occurrence of es is replaced with MX(s), i.e.,

MY (s) =
1

8

(
1 +

(
e1000s − 1

1000s

))3

.

Example 4.22. Sum of a Geometric Number of Independent Exponential
Random Variables. Jane visits a number of bookstores, looking for Great Ex-
pectations. Any given bookstore carries the book with probability p, independently
of the others. In a typical bookstore visited, Jane spends a random amount of time,
exponentially distributed with parameter λ, until she either finds the book or she
decides that the bookstore does not carry it. Assuming that Jane will keep visiting
bookstores until she buys the book and that the time spent in each is independent
of everything else, we wish to determine the mean, variance, and PDF of the total
time spent in bookstores.

The total number N of bookstores visited is geometrically distributed with pa-
rameter p. Hence, the total time Y spent in bookstores is the sum of a geometrically
distributed number N of independent exponential random variables X1, X2, . . .. We
have

E[Y ] = E[N ]E[X] =
1

p
· 1

λ
.

Using the formulas for the variance of geometric and exponential random variables,
we also obtain

var(Y ) = E[N ]var(X) + (E[X])2var(N) =
1

p
· 1

λ2
+

1

λ2
· 1 − p

p2
=

1

λ2p2
.



28 Further Topics on Random Variables and Expectations Chap. 4

In order to find the transform MY (s), let us recall that

MX(s) =
λ

λ − s
, MN (s) =

pes

1 − (1 − p)es
.

Then, MY (s) is found by starting with MN (s) and replacing each occurrence of es

with MX(s). This yields

MY (s) =
pMX(s)

1 − (1 − p)MX(s)
=

pλ

λ − s

1 − (1 − p)
λ

λ − s

,

which simplifies to

MY (s) =
pλ

pλ − s
.

We recognize this as the transform of an exponentially distributed random variable
with parameter pλ, and therefore,

fY (y) = pλe−pλy, y ≥ 0.

This result can be surprising because the sum of a fixed number n of indepen-
dent exponential random variables is not exponentially distributed. For example,

if n = 2, the transform associated with the sum is
(
λ/(λ − s)

)2
, which does not

correspond to the exponential distribution.

Example 4.23. Sum of a Geometric Number of Independent Geometric
Random Variables. This example is a discrete counterpart of the preceding one.
We let N be geometrically distributed with parameter p. We also let each random
variable Xi be geometrically distributed with parameter q. We assume that all of
these random variables are independent. Let Y = X1 + · · · + XN . We have

MN (s) =
pes

1 − (1 − p)es
, MX(s) =

qes

1 − (1 − q)es
.

To determine MY (s), we start with the formula for MN (s) and replace each occur-
rence of es with MX(s). This yields

MY (s) =
pMX(s)

1 − (1 − p)MX(s)
,

and, after some algebra,

MY (s) =
pqes

1 − (1 − pq)es
.

We conclude that Y is geometrically distributed, with parameter pq.
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Properties of Sums of a Random Number of Independent Random
Variables

Let X1, X2, . . . be random variables with common mean µ and common
variance σ2. Let N be a random variable that takes nonnegative integer
values. We assume that all of these random variables are independent, and
consider

Y = X1 + · · · + XN .

Then,

• E[Y ] = µE[N ].

• var(Y ) = σ2E[N ] + µ2var(N).

• The transform MY (s) is found by starting with the transform MN (s)
and replacing each occurrence of es with MX(s).

4.5 COVARIANCE AND CORRELATION

The covariance of two random variables X and Y is denoted by cov(X, Y ), and
is defined by

cov(X, Y ) = E
[(

X − E[X]
)(

Y − E[Y ]
)]

.

When cov(X, Y ) = 0, we say that X and Y are uncorrelated.
Roughly speaking, a positive or negative covariance indicates that the val-

ues of X − E[X] and Y − E[Y ] obtained in a single experiment “tend” to have
the same or the opposite sign, respectively (see Fig. 4.8). Thus the sign of the
covariance provides an important qualitative indicator of the relation between
X and Y .

If X and Y are independent, then

cov(X, Y ) = E
[(

X − E[X]
)(

Y − E[Y ]
)]

= E
[
X − E[X]

]
E

[
Y − E[Y ]

]
= 0.

Thus if X and Y are independent, they are also uncorrelated. However, the
reverse is not true, as illustrated by the following example.

Example 4.24. The pair of random variables (X, Y ) takes the values (1, 0), (0, 1),
(−1, 0), and (0,−1), each with probability 1/4 (see Fig. 4.9). Thus, the marginal
PMFs of X and Y are symmetric around 0, and E[X] = E[Y ] = 0. Furthermore,
for all possible value pairs (x, y), either x or y is equal to 0, which implies that
XY = 0 and E[XY ] = 0. Therefore,

cov(X, Y ) = E
[(

X − E[X]
)(

Y − E[Y ]
)]

= E[XY ] = 0,
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x 

y 

x 

y 

(a) (b)

Figure 4.8: Examples of positively and negatively correlated random variables.
Here X and Y are uniformly distributed over the ellipses shown. In case (a) the
covariance cov(X, Y ) is negative, while in case (b) it is positive.

x 

y 

(1,0)(-1,0)

(0,1)

(0,-1)

Figure 4.9: Joint PMF of X and Y
for Example 4.21. Each of the four
points shown has probability 1/4. Here
X and Y are uncorrelated but not in-
dependent.

and X and Y are uncorrelated. However, X and Y are not independent since, for
example, a nonzero value of X fixes the value of Y to zero.

The correlation coefficient ρ of two random variables X and Y that have
nonzero variances is defined as

ρ =
cov(X, Y )√

var(X)var(Y )
.

It may be viewed as a normalized version of the covariance cov(X, Y ), and in fact
it can be shown that ρ ranges from −1 to 1 (see the end-of-chapter problems).

If ρ > 0 (or ρ < 0), then the values of x − E[X] and y − E[Y ] “tend”
to have the same (or opposite, respectively) sign, and the size of |ρ| provides a
normalized measure of the extent to which this is true. In fact, always assuming
that X and Y have positive variances, it can be shown that ρ = 1 (or ρ = −1)
if and only if there exists a positive (or negative, respectively) constant c such
that

y − E[Y ] = c
(
x − E[X]

)
, for all possible numerical values (x, y)



Sec. 4.5 Covariance and Correlation 31

(see the end-of-chapter problems). The following example illustrates in part this
property.

Example 4.25. Consider n independent tosses of a biased coin with probability of
a head equal to p. Let X and Y be the numbers of heads and of tails, respectively,
and let us look at the correlation of X and Y . Here, for all possible pairs of values
(x, y), we have x + y = n, and we also have E[X] + E[Y ] = n. Thus,

x − E[X] = −
(
y − E[Y ]

)
, for all possible (x, y).

We will calculate the correlation coefficient of X and Y , and verify that it is indeed
equal to −1.

We have

cov(X, Y ) = E
[(

X − E[X]
)(

Y − E[Y ]
)]

= −E
[
(X − E[X])2

]
= −var(X).

Hence, the correlation coefficient is

ρ(X, Y ) =
cov(X, Y )√
var(X)var(Y )

=
−var(X)√

var(X)var(X)
= −1.

The covariance can be used to obtain a formula for the variance of the
sum of several (not necessarily independent) random variables. In particular, if
X1, X2, . . . , Xn are random variables with finite variance, we have

var

(
n∑

i=1

Xi

)
=

n∑
i=1

var(Xi) + 2
n∑

i,j=1
i<j

cov(Xi, Xj).

This can be seen from the following calculation, where for brevity, we denote
X̃i = Xi − E[Xi]:

var

(
n∑

i=1

Xi

)
= E




(
n∑

i=1

X̃i

)2



= E


 n∑

i=1

n∑
j=1

X̃iX̃j




=
n∑

i=1

n∑
j=1

E[X̃iX̃j ]

=
∑
i=1

E[X̃i
2
] + 2

n∑
i,j=1
i<j

E[X̃iX̃j ]

=
n∑

i=1

var(Xi) + 2
n∑

i,j=1
i<j

cov(Xi, Xj).
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The following example illustrates the use of this formula.

Example 4.26. Consider the hat problem discussed in Section 2.5, where n
people throw their hats in a box and then pick a hat at random. Let us find the
variance of X, the number of people that pick their own hat. We have

X = X1 + · · · + Xn,

where Xi is the random variable that takes the value 1 if the ith person selects
his/her own hat, and takes the value 0 otherwise. Noting that Xi is Bernoulli with
parameter p = P(Xi = 1) = 1/n, we obtain

var(Xi) =
1

n

(
1 − 1

n

)
.

For i �= j, we have

cov(Xi, Xj) = E
[(

Xi − E[Xi]
)(

Xj − E[Xj ]
)]

= E[XiXj ] − E[Xi]E[Xj ]

= P(Xi = 1 and Xj = 1) − P(Xi = 1)P(Xj = 1)

= P(Xi = 1)P(Xj = 1 |Xi = 1) − P(Xi = 1)P(Xj = 1)

=
1

n

1

n − 1
− 1

n2

=
1

n2(n − 1)
.

Therefore

var(X) = var

(
n∑

i=1

Xi

)

=

n∑
i=1

var(Xi) + 2

n∑
i,j=1
i<j

cov(Xi, Xj)

= n
1

n

(
1 − 1

n

)
+ 2

n(n − 1)

2

1

n2(n − 1)

= 1.

4.6 LEAST SQUARES ESTIMATION

In many practical contexts, we want to form an estimate of the value of a random
variable X given the value of a related random variable Y , which may be viewed
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as some form of “measurement” of X. For example, X may be the range of
an aircraft and Y may be a noise-corrupted measurement of that range. In
this section we discuss a popular formulation of the estimation problem, which
is based on finding the estimate c that minimizes the expected value of the
squared error (X − c)2 (hence the name “least squares”).

If the value of Y is not available, we may consider finding an estimate (or
prediction) c of X. The estimation error X−c is random (because X is random),
but the mean squared error E

[
(X − c)2

]
is a number that depends on c and can

be minimized over c. With respect to this criterion, it turns out that the best
possible estimate is c = E[X], as we proceed to verify.

Let m = E[X]. For any estimate c, we have

E
[
(X − c)2

]
= E

[
(X − m + m − c)2

]
= E

[
(X − m)2

]
+ 2E

[
(X − m)(m − c)

]
+ E

[
(m − c)2

]
= E

[
(X − m)2

]
+ 2E[X − m](m − c) + (m − c)2

= E
[
(X − m)2

]
+ (m − c)2,

where we used the fact E[X − m] = 0. The first term in the right-hand side
is the variance of X and is unaffected by our choice of c. Therefore, we should
choose c in a way that minimizes the second term, which leads to c = m = E[X]
(see Fig. 4.10).

cE[X]

Expected Squared
Estimation Error

E [(X- c)2]

var(X)

Figure 4.10: The mean squared error E
[
(X − c)2], as a function of the estimate

c, is a quadratic in c and is minimized when c = E[X]. The minimum value of
the mean squared error is var(X).

Suppose now that we observe the experimental value y of some related
random variable Y , before forming an estimate of X. How can we exploit this
additional information? Once we are told that Y takes a particular value y, the
situation is identical to the one considered earlier, except that we are now in a
new “universe,” where everything is conditioned on Y = y. We can therefore
adapt our earlier conclusion and assert that c = E[X |Y = y] minimizes the
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conditional mean squared error E
[
(c − X)2 |Y = y

]
. Note that the resulting

estimate c depends on the experimental value y of Y (as it should). Thus, we
call E[X |Y = y] the least-squares estimate of X given the experimental value y.

Example 4.27. Let X be uniformly distributed in the interval [4, 10] and suppose
that we observe X with some random error W , that is, we observe the experimental
value of the random variable

Y = X + W.

We assume that W is uniformly distributed in the interval [−1, 1], and independent
of X. What is the least squares estimate of X given the experimental value of Y ?

We have fX(x) = 1/6 for 4 ≤ x ≤ 10, and fX(x) = 0, elsewhere. Conditioned
on X being equal to some x, Y is the same as x + W , and is uniform over the
interval [x − 1, x + 1]. Thus, the joint PDF is given by

fX,Y (x, y) = fX(x)fY |X(y |x) =
1

6
· 1

2
=

1

12
,

if 4 ≤ x ≤ 10 and x − 1 ≤ y ≤ x + 1, and is zero for all other values of (x, y).
The slanted rectangle in the right-hand side of Fig. 4.11 is the set of pairs (x, y) for
which fX,Y (x, y) is nonzero.

Given an experimental value y of Y , the conditional PDF fX|Y of X is uniform
on the corresponding vertical section of the slanted rectangle. The optimal estimate
E[X |Y = y] is the midpoint of that section. In the special case of the present
example, it happens to be a piecewise linear function of y.

x 

fX(x )

4 10

1/6

x  

4

10

3 5 9 11

Y = X + W 
where W  is a measurement

error that is uniformly
distributed in the interval [-1,1]

y  

Least squares estimate
E [X | Y = y ]

Figure 4.11: The PDFs in Example 4.27. The least squares estimate of X given
the experimental value y of the random variable Y = X + W depends on y and
is represented by the piecewise linear function shown in the figure on the right.

As Example 4.27 illustrates, the estimate E[X |Y = y] depends on the
observed value y and should be viewed as a function of y; see Fig. 4.12. To
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amplify this point, we refer to any function of the available information as an
estimator. Given an experimental outcome y of Y , an estimator g(·) (which is
a function) produces an estimate g(y) (which is a number). However, if y is left
unspecified, then the estimator results in a random variable g(Y ). The expected
value of the squared estimation error associated with an estimator g(Y ) is

E
[(

X − g(Y )
)2

]
.

Out of all estimators, it turns out that the mean squared estimation error
is minimized when g(Y ) = E[X |Y ]. To see this, note that if c is any number,
we have

E
[(

X − E[X |Y = y]
)2 ∣∣ Y = y

]
≤ E

[
(X − c)2 |Y = y

]
.

Consider now an estimator g(Y ). For a given value y of Y , g(y) is a number
and, therefore,

E
[(

X − E[X |Y = y]
)2 |Y = y

]
≤ E

[(
X − g(y)

)2 ∣∣ Y = y
]
.

This inequality is true for every possible experimental value y of Y . Thus,

E
[(

X − E[X |Y ]
)2 ∣∣ Y

]
≤ E

[
(X − g(Y )

)2 ∣∣ Y
]
,

which is now an inequality between random variables (functions of Y ). We take
expectations of both sides, and use the law of iterated expectations, to conclude
that

E
[(

X − E[X |Y ]
)2

]
≤ E

[
(X − g(Y )

)2
]

for all functions g(Y ).

E[X  |Y = y ]y LEAST SQUARES
ESTIMATOR

Figure 4.12: The least squares estimator.
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Key Facts about Least Mean Squares Estimation

• E
[
(X − c)2

]
is minimized when c = E[X]:

E
[(

X − E[X]
)2

]
≤ E

[
(X − c)2

]
, for all c.

• E
[
(X − c)2 |Y = y

]
is minimized when c = E[X |Y = y]:

E
[(

X − E[X |Y = y]
)2 ∣∣ Y = y

]
≤ E

[
(X − c)2 |Y = y

]
, for all c.

• Out of all estimators g(Y ) of X based on Y , the mean squared esti-
mation error E

[(
X − g(Y )

)2
]

is minimized when g(Y ) = E[X |Y ]:

E
[(

X − E[X |Y ]
)2

]
≤ E

[(
X − g(Y )

)2
]
, for all functions g(Y ).

Some Properties of the Estimation Error

Let us introduce the notation

X̂ = E[X |Y ], X̃ = X − X̂,

for the (optimal) estimator and the associated estimation error, respectively.
Note that both X̂ and X̃ are random variables, and by the law of iterated
expectations,

E[X̃] = E
[
X − E[X |Y ]

]
= E[X] − E[X] = 0.

The equation E[X̃] = 0 remains valid even if we condition on Y , because

E[X̃ |Y ] = E[X − X̂ |Y ] = E[X |Y ] − E[X̂ |Y ] = X̂ − X̂ = 0.

We have used here the fact that X̂ is completely determined by Y and therefore
E[X̂ |Y ] = X̂. For similar reasons,

E
[(

X̂ − E[X]
)
X̃ |Y

]
=

(
X̂ − E[X]

)
E[X̃ |Y ] = 0.

Taking expectations and using the law of iterated expectations, we obtain

E
[(

X̂ − E[X]
)
X̃

]
= 0.
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Note that X = X̂ + X̃, which yields X − E[X] = X̂ − E[X] + X̃. We square
both sides of the latter equality and take expectations to obtain

var(X) = E
[(

X − E[X]
)2]

= E
[(

X̂ − E[X] + X̃
)2

]
= E

[(
X̂ − E[X]

)2
]

+ E[X̃2] + 2E
[(

X̂ − E[X]
)
X̃

]
= E

[(
X̂ − E[X]

)2
]

+ E[X̃2]

= var(X̂) + var(X̃).

(The last equality holds because E[X̂] = E[X] and E[X̃] = 0.) In summary, we
have established the following important formula, which is just another version
of the law of conditional variances introduced in Section 4.3.

var(X) = var(X̂) + var(X̃).

Example 4.28. Let us say that the observed random variable Y is uninformative if
the mean squared estimation error E[X̃2] = var(X̃) is the same as the unconditional
variance var(X) of X. When is this the case?

Using the formula

var(X) = var(X̂) + var(X̃),

we see that Y is uninformative if and only if var
(
X̂

)
= 0. The variance of a random

variable is zero if and only if that random variable is a constant, equal to its mean.
We conclude that Y is uninformative if and only if X̂ = E[X |Y ] = E[X], for every
realization of Y .

If X and Y are independent, we have E[X |Y ] = E[X] and Y is indeed
uninformative, which is quite intuitive. The converse, however, is not true. That
is, it is possible for E[X |Y ] to be always equal to the constant E[X], without X
and Y being independent. (Can you construct an example?)

Estimation Based on Several Measurements

So far, we have discussed the case where we estimate one random variable X
on the basis of another random variable Y . In practice, one often has access
to the experimental values of several random variables Y1, . . . , Yn, that can be
used to estimate X. Generalizing our earlier discussion, and using essentially



38 Further Topics on Random Variables and Expectations Chap. 4

the same argument, the mean squared estimation error is minimized if we use
E[X |Y1, . . . , Yn] as our estimator. That is,

E
[(

X − E[X |Y1, . . . , Yn]
)2

]
≤ E

[(
X − g(Y1, . . . , Yn)

)2
]
,

for all functions g(Y1, . . . , Yn).

This provides a complete solution to the general problem of least squares
estimation, but is sometimes difficult to implement, because:

(a) In order to compute the conditional expectation E[X |Y1, . . . , Yn], we need
a complete probabilistic model, that is, the joint PDF fX,Y1,...,Yn(·) of n+1
random variables.

(b) Even if this joint PDF is available, E[X |Y1, . . . , Yn] can be a very compli-
cated function of Y1, . . . , Yn.

As a consequence, practitioners often resort to approximations of the conditional
expectation or focus on estimators that are not optimal but are simple and easy
to implement. The most common approach involves linear estimators, of the
form

a1Y1 + · · · + anYn + b.

Given a particular choice of a1, . . . , an, b, the corresponding mean squared error
is

E
[
(X − a1Y1 − · · · − anYn − b)2

]
,

and it is meaningful to choose the coefficients a1, . . . , an, b in a way that min-
imizes the above expression. This problem is relatively easy to solve and only
requires knowledge of the means, variances, and covariances of the different ran-
dom variables. We develop the solution for the case where n = 1.

Linear Least Mean Squares Estimation Based on a Single Measurement

We are interested in finding a and b that minimize the mean squared estimation
error E

[
(X −aY − b)2

]
, associated with a linear estimator aY + b of X. Suppose

that a has already been chosen. How should we choose b? This is the same as
having to choose a constant b to estimate the random variable aX − Y and, by
our earlier results, the best choice is to let b = E[X − aY ] = E[X] − aE[Y ].

It now remains to minimize, with respect to a, the expression

E
[(

X − aY − E[X] + aE[Y ]
)2

]
,

which is the same as

E
[(

(X − E[X]) − a(Y − E[Y ])
)2

]
= E

[
(X − E[X])2

]
+ a2E

[
(Y − E[Y ])2

]
− 2aE

[(
X − E[X]

)(
Y − E[Y ]

)]
= σ2

X + a2σ2
Y − 2a · cov(X, Y ),
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where cov(X, Y ) is the covariance of X and Y :

cov(X, Y ) = E
[
(X − E[X])(Y − E[Y ])

]
.

This is a quadratic function of a, which is minimized at the point where its
derivative is zero, that is, if

a =
cov(X, Y )

σ2
Y

=
ρσXσY

σ2
Y

= ρ
σX

σY
,

where

ρ =
cov(X, Y )

σXσY

is the correlation coefficient. With this choice of a, the mean squared estimation
error is given by

σ2
X + a2σ2

Y − 2a · cov(X, Y ) =σ2
X + ρ2

σ2
X

σ2
Y

σ2
Y − 2ρ

σX

σy
ρσXσY

=(1 − ρ2)σ2
X .

Linear Least Mean Squares Estimation Formulas

The least mean squares linear estimator of X based on Y is

E[X] +
cov(X, Y )

σ2
Y

(
Y − E[Y ]

)
.

The resulting mean squared estimation error is equal to

(1 − ρ2)var(X).

4.7 THE BIVARIATE NORMAL DISTRIBUTION

We say that two random variables X and Y have a bivariate normal distribution
if there are two independent normal random variables U and V and some scalars
a, b, c, d, such that

X = aU + bV, Y = cU + dV.
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To keep the discussion simple, we restrict ourselves to the case where U , V (and
therefore, X and Y as well) have zero mean.

A most important property of the bivariate normal distribution is the fol-
lowing:

If two random variables X and Y have a bivariate normal distribution and
are uncorrelated, then they are independent.

This property can be verified using multivariate transforms. We assume
that X and Y have a bivariate normal distribution and are uncorrelated. Recall
that if z is a zero-mean normal random variable with variance σ2

Z , then E[eZ ] =
MZ(1) = σ2

Z/2. Fix some scalars s1, s2 and let Z = s1X + s2Y . Then, Z is the
sum of the independent normal random variables (as1 +cs2)U and (bs1 +ds2)V ,
and is therefore normal. Since X and Y are uncorrelated, the variance of Z is
s2
1σ

2
X + s2

2σ
2
Y . Then,

MX,Y (s1, s2) = E [es1X+s2Y ]
= E[eZ ]

= e(s2
1σ2

X+s2
2σ2

Y )/2.

Let X and Y be independent zero-mean normal random variables with the same
variances σ2

X and σ2
Y as X and Y . Since they are independent, they are uncor-

related, and the same argument as above yields

MX,Y (s1, s2) = e(s2
1σ2

X+s2
2σ2

Y )/2..

Thus, the two pairs of random variables (X, Y ) and (X, Y ) are associated with
the same multivariate transform. Since the multivariate transform completely
determines the joint PDF, it follows that the pair (X, Y ) has the same joint
PDF as the pair (X, Y ). Since X and Y are independent, X and Y must also
be independent.

Let us define

X̂ =
E[XY ]
E[Y 2]

Y, X̃ = X − X̂.

Thus, X̂ is the best linear estimator of X given Y , and X̃ is the estimation error.
Since X and Y are linear combinations of independent normal random variables
U and V , it follows that Y and X̃ are also linear combinations of U and V . In
particular, Y and X̃ have a bivariate normal distribution. Furthermore,

cov(Y, X̃) = E[Y X̃] = E[Y X] − E[Y X̂] = E[Y X] − E[XY ]
E[Y 2]

E[Y 2] = 0.
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Thus, Y and X̃ are uncorrelated and, therefore, independent. Since X̂ is a scalar
multiple of Y , we also see that X̂ and X̃ are independent.

We now start from the identity

X = X̂ + X̃,

which implies that

E[X |Y ] = E[X̂ |Y ] + E[X̃ |Y ].

But E[X̂ |Y ] = X̂ because X̂ is completely determined by Y . Also, X̃ is inde-
pendent of Y and

E[X̃ |Y ] = E[X̃] = E[X − X̂] = 0.

(The last equality was obtained because X and Y are assumed to have zero mean
and X̂ is a constant multiple of Y .) Putting everything together, we come to
the important conclusion that the best linear estimator X̂ is of the form

X̂ = E[X |Y ].

Differently said, the optimal estimator E[X |Y ] turns out to be linear.
Let us now determine the conditional density of X, conditioned on Y . We

have X = X̂ + X̃. After conditioning on Y , the value of the random variable
X̂ is completely determined. On the other hand, X̃ is independent of Y and its
distribution is not affected by conditioning. Therefore, the conditional distribu-
tion of X given Y is the same as the distribution of X̃, shifted by X̂. Since X̃ is
normal with mean zero and some variance σ2

X̃
, we conclude that the conditional

distribution of X is also normal with mean X̂ and variance σ2
X̃

.
We summarize our conclusions below. Although our discussion used the

zero-mean assumption, these conclusions also hold for the non-zero mean case
and we state them with this added generality.

Properties of the Bivariate Normal Distribution

Let X and Y have a bivariate normal distribution. Then:

• X and Y are independent if and only if they are uncorrelated.

• The conditional expectation is given by

E[X |Y ] = E[X] +
cov(X, Y )

σ2
Y

(Y − E[Y ]).

It is a linear function of Y and has a normal distribution.
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• The conditional distribution of X given Y is normal with mean E[X |Y ]
and variance

σ2
X̃

= (1 − ρ2)σ2
X .

Finally, let us note that while if X and Y have a bivariate normal distri-
bution, then X and Y are (individually) normal random variables, the reverse
is not true even if X and Y are uncorrelated. This is illustrated in the following
example.

Example 4.29. Let X have a normal distribution with zero mean and unit
variance. Let z be independent of X, with P(Z = 1) = P(Z = −1) = 1/2. Let
Y = ZX, which is also normal with zero mean (why?). Furthermore,

E[XY ] = E[ZX2] = E[Z]E[X2] = 0 × 1 = 0,

so X and Y are uncorrelated. On the other hand X and Y are clearly dependent.
(For example, if X = 1, then Y must be either −1 or 1.) This may seem to contradict
our earlier conclusion that zero correlation implies independence? However, in this
example, the joint PDF of X and Y is not multivariable normal, even though both
marginal distributions are normal.


