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A stochastic process is a mathematical model of a probabilistic experiment that
evolves in time and generates a sequence of numerical values. For example, a
stochastic process can be used to model:

(a) the sequence of daily prices of a stock;

(b) the sequence of scores in a football game;

(c) the sequence of failure times of a machine;

(d) the sequence of hourly traffic loads at a node of a communication network;

(e) the sequence of radar measurements of the position of an airplane.

Each numerical value in the sequence is modeled by a random variable, so a
stochastic process is simply a (finite or infinite) sequence of random variables
and does not represent a major conceptual departure from our basic framework.
We are still dealing with a single basic experiment that involves outcomes gov-
erned by a probability law, and random variables that inherit their probabilistic
properties from that law.† However, stochastic processes involve some change in
emphasis over our earlier models. In particular:

(a) We tend to focus on the dependencies in the sequence of values generated
by the process. For example, how do future prices of a stock depend on
past values?

(b) We are often interested in long-term averages, involving the entire se-
quence of generated values. For example, what is the fraction of time that
a machine is idle?

(c) We sometimes wish to characterize the likelihood or frequency of certain
boundary events. For example, what is the probability that within a
given hour all circuits of some telephone system become simultaneously
busy, or what is the frequency with which some buffer in a computer net-
work overflows with data?

In this book, we will discuss two major categories of stochastic processes.

(a) Arrival-Type Processes: Here, we are interested in occurrences that have
the character of an “arrival,” such as message receptions at a receiver, job
completions in a manufacturing cell, customer purchases at a store, etc.
We will focus on models in which the interarrival times (the times between
successive arrivals) are independent random variables. In Section 5.1, we
consider the case where arrivals occur in discrete time and the interarrival
times are geometrically distributed – this is the Bernoulli process. In Sec-
tion 5.2, we consider the case where arrivals occur in continuous time and

† Let us emphasize that all of the random variables arising in a stochastic process
refer to a single and common experiment, and are therefore defined on a common
sample space. The corresponding probability law can be specified directly or indirectly
(by assuming some of its properties), as long as it unambiguously determines the joint
CDF of any subset of the random variables involved.
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the interarrival times are exponentially distributed – this is the Poisson
process.

(b) Markov Processes: Here, we are looking at experiments that evolve in time
and in which the future evolution exhibits a probabilistic dependence on
the past. As an example, the future daily prices of a stock are typically
dependent on past prices. However, in a Markov process, we assume a very
special type of dependence: the next value depends on past values only
through the current value. There is a rich methodology that applies to
such processes, and which will be developed in Chapter 6.

5.1 THE BERNOULLI PROCESS

The Bernoulli process can be visualized as a sequence of independent coin tosses,
where the probability of heads in each toss is a fixed number p in the range
0 < p < 1. In general, the Bernoulli process consists of a sequence of Bernoulli
trials, where each trial produces a 1 (a success) with probability p, and a 0 (a
failure) with probability 1 − p, independently of what happens in other trials.

Of course, coin tossing is just a paradigm for a broad range of contexts
involving a sequence of independent binary outcomes. For example, a Bernoulli
process is often used to model systems involving arrivals of customers or jobs at
service centers. Here, time is discretized into periods, and a “success” at the kth
trial is associated with the arrival of at least one customer at the service center
during the kth period. In fact, we will often use the term “arrival” in place of
“success” when this is justified by the context.

In a more formal description, we define the Bernoulli process as a sequence
X1, X2, . . . of independent Bernoulli random variables Xi with

P(Xi = 1) = P(success at the ith trial) = p,

P(Xi = 0) = P(failure at the ith trial) = 1 − p,

for each i.†
Given an arrival process, one is often interested in random variables such

as the number of arrivals within a certain time period, or the time until the first
arrival. For the case of a Bernoulli process, some answers are already available
from earlier chapters. Here is a summary of the main facts.

† Generalizing from the case of a finite number of random variables, the inde-
pendence of an infinite sequence of random variables Xi is defined by the requirement
that the random variables X1, . . . , Xn be independent for any finite n. Intuitively,
knowing the experimental values of any finite subset of the random variables does not
provide any new probabilistic information on the remaining random variables, and the
conditional distribution of the latter stays the same as the unconditional one.
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Some Random Variables Associated with the Bernoulli Process
and their Properties

• The binomial with parameters p and n. This is the number S of
successes in n independent trials. Its PMF, mean, and variance are

pS(k) =
(

n

k

)
pk(1 − p)n−k, k = 0, 1, . . . , n,

E[S] = np, var(S) = np(1 − p).

• The geometric with parameter p. This is the number T of trials
up to (and including) the first success. Its PMF, mean, and variance
are

pT (t) = (1 − p)t−1p, t = 1, 2, . . . ,

E[T ] =
1
p
, var(T ) =

1 − p

p2
.

Independence and Memorylessness

The independence assumption underlying the Bernoulli process has important
implications, including a memorylessness property (whatever has happened in
past trials provides no information on the outcomes of future trials). An appreci-
ation and intuitive understanding of such properties is very useful, and allows for
the quick solution of many problems that would be difficult with a more formal
approach. In this subsection, we aim at developing the necessary intuition.

Let us start by considering random variables that are defined in terms of
what happened in a certain set of trials. For example, the random variable
Z = (X1 + X3)X6X7 is defined in terms of the first, third, sixth, and seventh
trial. If we have two random variables of this type and if the two sets of trials
that define them have no common element, then these random variables are
independent. This is a generalization of a fact first seen in Chapter 2: if two
random variables U and V are independent, then any two functions of them,
g(U) and h(V ), are also independent.

Example 5.1.

(a) Let U be the number of successes in trials 1 to 5. Let V be the number of
successes in trials 6 to 10. Then, U and V are independent. This is because
U = X1 + · · ·+X5, V = X6 + · · ·+X10, and the two collections {X1, . . . , X5},
{X6, . . . , X10} have no common elements.
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(b) Let U (respectively, V ) be the first odd (respectively, even) time i in which we
have a success. Then, U is determined by the odd-time sequence X1, X3, . . .,
whereas V is determined by the even-time sequence X2, X4, . . .. Since these
two sequences have no common elements, U and V are independent.

Suppose now that a Bernoulli process has been running for n time steps,
and that we have observed the experimental values of X1, X2, . . . , Xn. We no-
tice that the sequence of future trials Xn+1, Xn+2, . . . are independent Bernoulli
trials and therefore form a Bernoulli process. In addition, these future trials are
independent from the past ones. We conclude that starting from any given point
in time, the future is also modeled by a Bernoulli process, which is independent
of the past. We refer to this as the fresh-start property of the Bernoulli process.

Let us now recall that the time T until the first success is a geometric
random variable. Suppose that we have been watching the process for n time
steps and no success has been recorded. What can we say about the number T−n
of remaining trials until the first success? Since the future of the process (after
time n) is independent of the past and constitutes a fresh-starting Bernoulli
process, the number of future trials until the first success is described by the
same geometric PMF. Mathematically, we have

P(T − n = t |T > n) = (1 − p)t−1p = P(T = t), t = 1, 2, . . . .

This memorylessness property can also be derived algebraically, using the
definition of conditional probabilities, but the argument given here is certainly
more intuitive.

Memorylessness and the Fresh-Start Property of the Bernoulli
Process

• The number T − n of trials until the first success after time n has
a geometric distribution with parameter p, and is independent of the
past.

• For any given time n, the sequence of random variables Xn+1, Xn+2, . . .
(the future of the process) is also a Bernoulli process, and is indepen-
dent from X1, . . . , Xn (the past of the process).

The next example deals with an extension of the fresh-start property, in
which we start looking at the process at a random time, determined by the past
history of the process.

Example 5.2. Let N be the first time in which we have a success immediately
following a previous success. (That is, N is the first i for which Xi−1 = Xi = 1.)
What is the probability P(XN+1 = XN+2 = 0) that there are no successes in the
two trials that follow?
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Intuitively, once the condition XN−1 = XN = 1 is satisfied, from then on,
the future of the process still consists of independent Bernoulli trials. Therefore the
probability of an event that refers to the future of the process is the same as in a
fresh-starting Bernoulli process, so that P(XN+1 = XN+2 = 0) = (1 − p)2.

To make this argument precise, we argue that the time N is a random variable,
and by conditioning on the possible values of N , we have

P(XN+1 = XN+2 = 0) =
∑

n

P(N = n)P(XN+1 = XN+2 = 0 |N = n)

=
∑

n

P(N = n)P(Xn+1 = Xn+2 = 0 |N = n)

Because of the way that N was defined, the event {N = n} occurs if and only if
the experimental values of X1, . . . , Xn satisfy a certain condition. But the latter
random variables are independent of Xn+1 and Xn+2. Therefore,

P(Xn+1 = Xn+2 = 0 |N = n) = P(Xn+1 = Xn+2 = 0) = (1 − p)2,

which leads to

P(XN+1 = XN+2 = 0) =
∑

n

P(N = n)(1 − p)2 = (1 − p)2.

Interarrival Times

An important random variable associated with the Bernoulli process is the time
of the kth success, which we denote by Yk. A related random variable is the kth
interarrival time, denoted by Tk. It is defined by

T1 = Y1, Tk = Yk − Yk−1, k = 2, 3, . . .

and represents the number of trials following the k − 1st success until the next
success. See Fig. 5.1 for an illustration, and also note that

Yk = T1 + T2 + · · · + Tk.

1

TimeT1

0 10 0 0 0 0 0 01 1 0

T2 T3 T4

Y3

Figure 5.1: Illustration of interarrival times. In this example, T1 = 3, T2 = 5,
T3 = 2, T4 = 1. Furthermore, Y1 = 3, Y2 = 8, Y3 = 10, Y4 = 11.
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We have already seen that the time T1 until the first success is a geometric
random variable with parameter p. Having had a success at time T1, the future
is a fresh-starting Bernoulli process. Thus, the number of trials T2 until the
next success has the same geometric PMF. Furthermore, past trials (up to and
including time T1) are independent of future trials (from time T1 + 1 onward).
Since T2 is determined exclusively by what happens in these future trials, we
see that T2 is independent of T1. Continuing similarly, we conclude that the
random variables T1, T2, T3, . . . are independent and all have the same geometric
distribution.

This important observation leads to an alternative, but equivalent way of
describing the Bernoulli process, which is sometimes more convenient to work
with.

Alternative Description of the Bernoulli Process

1. Start with a sequence of independent geometric random variables T1,
T2, . . ., with common parameter p, and let these stand for the interar-
rival times.

2. Record a success (or arrival) at times T1, T1 + T2, T1 + T2 + T3, etc.

Example 5.3. A computer executes two types of tasks, priority and nonpriority,
and operates in discrete time units (slots). A priority task arises with probability
p at the beginning of each slot, independently of other slots, and requires one full
slot to complete. A nonpriority task is executed at a given slot only if no priority
task is available. In this context, it may be important to know the probabilistic
properties of the time intervals available for nonpriority tasks.

With this in mind, let us call a slot busy if within this slot, the computer
executes a priority task, and otherwise let us call it idle. We call a string of idle
(or busy) slots, flanked by busy (or idle, respectively) slots, an idle period (or busy
period , respectively). Let us derive the PMF, mean, and variance of the following
random variables (cf. Fig. 5.2):

(a) T = the time index of the first idle slot;

(b) B = the length (number of slots) of the first busy period;

(c) I = the length of the first idle period.

We recognize T as a geometrically distributed random variable with param-
eter 1 − p. Its PMF is

pT (k) = pk−1(1 − p), k = 1, 2, . . . .

Its mean and variance are

E[T ] =
1

1 − p
, var(T ) =

p

(1 − p)2
.
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Time
Busy
Period

B IB B B B B BI I BI I I

T Idle
Period

Time

I B B B BI I BI I I

T

II I

B I

I B

Z

Z

Figure 5.2: Illustration of busy (B) and idle (I) periods in Example 5.3. In
the top diagram, T = 4, B = 3, and I = 2. In the bottom diagram, T = 1,
I = 5, and B = 4.

Let us now consider the first busy period. It starts with the first busy slot,
call it slot L. (In the top diagram in Fig. 5.2, L = 1; in the bottom diagram, L = 6.)
The number Z of subsequent slots until (and including) the first subsequent idle
slot has the same distribution as T , because the Bernoulli process starts fresh at
time L + 1. We then notice that Z = B and conclude that B has the same PMF
as T .

If we reverse the roles of idle and busy slots, and interchange p with 1−p, we
see that the length I of the first idle period has the same PMF as the time index
of the first busy slot, so that

pI(k) = (1 − p)k−1p, k = 1, 2, . . . , E[I] =
1

p
, var(I) =

1 − p

p2
.

We finally note that the argument given here also works for the second, third,
etc. busy (or idle) period. Thus the PMFs calculated above apply to the ith busy
and idle period, for any i.

The kth Arrival Time

The time Yk of the kth success is equal to the sum Yk = T1 + T2 + · · · + Tk of k
independent identically distributed geometric random variables. This allows us
to derive formulas for the mean, variance, and PMF of Yk, which are given in
the table that follows.
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Properties of the kth Arrival Time

• The kth arrival time is equal to the sum of the first k interarrival times

Yk = T1 + T2 + · · · + Tk,

and the latter are independent geometric random variables with com-
mon parameter p.

• The mean and variance of Yk are given by

E[Yk] = E[T1] + · · · + E[Tk] =
k

p
,

var(Yk) = var(T1) + · · · + var(Tk) =
k(1 − p)

p2
.

• The PMF of Yk is given by

pYk
(t) =

(
t − 1
k − 1

)
pk(1 − p)t−k, t = k, k + 1, . . . ,

and is known as the Pascal PMF of order k.

To verify the formula for the PMF of Yk, we first note that Yk cannot be
smaller than k. For t ≥ k, we observe that the event {Yk = t} (the kth success
comes at time t) will occur if and only if both of the following two events A and
B occur:

(a) event A: trial t is a success;

(b) event B: exactly k − 1 successes occur in the first t − 1 trials.

The probabilities of these two events are

P(A) = p

and

P(B) =
(

t − 1
k − 1

)
pk−1(1 − p)t−k,

respectively. In addition, these two events are independent (whether trial t is a
success or not is independent of what happened in the first t−1 trials). Therefore,

pYk
(t) = P(Yk = t) = P(A ∩ B) = P(A)P(B) =

(
t − 1
k − 1

)
pk(1 − p)t−k,

as claimed.
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Example 5.4. In each minute of basketball play, Alice commits a single foul with
probability p and no foul with probability 1 − p. The number of fouls in different
minutes are assumed to be independent. Alice will foul out of the game once she
commits her sixth foul, and will play 30 minutes if she does not foul out. What is
the PMF of Alice’s playing time?

We model fouls as a Bernoulli process with parameter p. Alice’s playing time
Z is equal to Y6, the time until the sixth foul, except if Y6 is larger than 30, in which
case, her playing time is 30, the duration of the game; that is, Z = min{Y6, 30}.
The random variable Y6 has a Pascal PMF of order 6, which is given by

pY6(t) =

(
t − 1

5

)
p6(1 − p)t−6, t = 6, 7, . . .

To determine the PMF pZ(z) of Z, we first consider the case where z is between 6
and 29. For z in this range, we have

pZ(z) = P(Z = z) = P(Y6 = z) =

(
z − 1

5

)
p6(1 − p)z−6, z = 6, 7, . . . , 29.

The probability that Z = 30 is then determined from

pZ(30) = 1 −
29∑

z=6

pZ(z).

Splitting and Merging of Bernoulli Processes

Starting with a Bernoulli process in which there is a probability p of an arrival
at each time, consider splitting it as follows. Whenever there is an arrival, we
choose to either keep it (with probability q), or to discard it (with probability
1−q); see Fig. 5.3. Assume that the decisions to keep or discard are independent
for different arrivals. If we focus on the process of arrivals that are kept, we see
that it is a Bernoulli process: in each time slot, there is a probability pq of a
kept arrival, independently of what happens in other slots. For the same reason,
the process of discarded arrivals is also a Bernoulli process, with a probability
of a discarded arrival at each time slot equal to p(1 − q).

In a reverse situation, we start with two independent Bernoulli processes
(with parameters p and q, respectively) and merge them into a single process,
as follows. An arrival is recorded in the merged process if and only if there
is an arrival in at least one of the two original processes, which happens with
probability p + q − pq [one minus the probability (1 − p)(1 − q) of no arrival in
either process.] Since different time slots in either of the original processes are
independent, different slots in the merged process are also independent. Thus,
the merged process is Bernoulli, with success probability p + q− pq at each time
step; see Fig. 5.4.
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process

q

1 - q

Figure 5.3: Splitting of a Bernoulli process.

Time

Time

Time

Merged process:
Bernoulli(p+q-pq)

Bernoulli(p)

Bernoulli(q)

Figure 5.4: Merging of independent Bernoulli process.

Splitting and merging of Bernoulli (or other) arrival processes arises in
many contexts. For example, a two-machine work center may see a stream of
arriving parts to be processed and split them by sending each part to a randomly
chosen machine. Conversely, a machine may be faced with arrivals of different
types that can be merged into a single arrival stream.

The Poisson Approximation to the Binomial

The number of successes in n independent Bernoulli trials is a binomial random
variable with parameters n and p, and its mean is np. In this subsection, we
concentrate on the special case where n is large but p is small, so that the mean
np has a moderate value. A situation of this type arises when one passes from
discrete to continuous time, a theme to be picked up in the next section. For
some more examples, think of the number of airplane accidents on any given day:
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there is a large number of trials (airplane flights), but each one has a very small
probability of being involved in an accident. Or think of counting the number of
typos in a book: there is a large number n of words, but a very small probability
of misspelling each one.

Mathematically, we can address situations of this kind, by letting n grow
while simultaneously decreasing p, in a manner that keeps the product np at a
constant value λ. In the limit, it turns out that the formula for the binomial PMF
simplifies to the Poisson PMF. A precise statement is provided next, together
with a reminder of some of the properties of the Poisson PMF that were derived
in earlier chapters.

Poisson Approximation to the Binomial

• A Poisson random variable Z with parameter λ takes nonnegative
integer values and is described by the PMF

pZ(k) = e−λ
λk

k!
, k = 0, 1, 2, . . . .

Its mean and variance are given by

E[Z] = λ, var(Z) = λ.

• For any fixed nonnegative integer k, the binomial probability

pS(k) =
n!

(n − k)!k!
pk(1 − p)n−k

converges to pZ(k), when we take the limit as n → ∞ and p = λ/n,
while keeping λ constant.

• In general, the Poisson PMF is a good approximation to the binomial
as long as λ = np, n is very large, and p is very small.

The verification of the limiting behavior of the binomial probabilities was
given in Chapter 2 as as an end-of-chapter problem, and is replicated here for
convenience. We let p = λ/n and note that

pS(k) =
n!

(n − k)!k!
pk(1 − p)n−k

=
n(n − 1) · · · (n − k + 1)

k!
· λk

nk
·
(

1 − λ

n

)n−k

.
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=
n

n
· (n − 1)

n
· · · (n − k + 1)

n
· λk

k!
·
(

1 − λ

n

)n−k

.

Let us focus on a fixed k and let n → ∞. Each one of the ratios (n − 1)/n,
(n − 2)/n, . . . , (n − k + 1)/n converges to 1. Furthermore,†

(
1 − λ

n

)−k

→ 1,

(
1 − λ

n

)n

→ e−λ.

We conclude that for each fixed k, and as n → ∞, we have

pS(k) → e−λ
λk

k!
.

Example 5.5. As a rule of thumb, the Poisson/binomial approximation

e−λ λk

k!
≈ n!

(n − k)!k!
pk(1 − p)n−k, k = 0, 1, . . . , n,

is valid to several decimal places if n ≥ 100, p ≤ 0.01, and λ = np. To check this,
consider the following.

Gary Kasparov, the world chess champion (as of 1999) plays against 100 ama-
teurs in a large simultaneous exhibition. It has been estimated from past experience
that Kasparov wins in such exhibitions 99% of his games on the average (in precise
probabilistic terms, we assume that he wins each game with probability 0.99, inde-
pendently of other games). What are the probabilities that he will win 100 games,
98 games, 95 games, and 90 games?

We model the number of games X that Kasparov does not win as a binomial
random variable with parameters n = 100 and p = 0.01. Thus the probabilities
that he will win 100 games, 98, 95 games, and 90 games are

pX(0) = (1 − 0.01)100 = 0.366,

pX(2) =
100!

98!2!
0.012(1 − 0.01)98 = 0.185,

pX(5) =
100!

95!5!
0.015(1 − 0.01)95 = 0.00290,

pX(10) =
100!

90!10!
0.0110(1 − 0.01)90 = 7.006 × 10−8,

† We are using here, the well known formula limx→∞(1 − 1
x
)x = e−1. Letting

x = n/λ, we have limn→∞(1 − λ
n
)n/λ = e−1, from which it follows that limn→∞(1 −

λ
n
)n = e−λ.
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respectively. Now let us check the corresponding Poisson approximations with λ =
100 · 0.01 = 1. They are:

pZ(0) = e−1 1

0!
= 0.368,

pZ(2) = e−1 1

2!
= 0.184,

pZ(5) = e−1 1

5!
= 0.00306,

pZ(10) = e−1 1

10!
= 1.001 × 10−8.

By comparing the binomial PMF values pX(k) with their Poisson approximations
pZ(k), we see that there is close agreement.

Suppose now that Kasparov plays simultaneously just 5 opponents, who are,
however, stronger so that his probability of a win per game is 0.9. Here are the
binomial probabilities pX(k) for n = 5 and p = 0.1, and the corresponding Poisson
approximations pZ(k) for λ = np = 0.5,

pX(0) = 0.590, pZ(0) = 0.605,

pX(1) = 0.328, pZ(1) = 0.303,

pX(2) = 0.0729, pZ(2) = 0.0758,

pX(3) = 0.0081, pZ(3) = 0.0126,

pX(4) = 0.00045, pZ(4) = 0.0016,

pX(5) = 0.00001, pZ(5) = 0.00016.

We see that the approximation, while not poor, is considerably less accurate than
in the case where n = 100 and p = 0.01.

Example 5.6. A packet consisting of a string of n symbols is transmitted over
a noisy channel. Each symbol has probability p = 0.0001 of being transmitted in
error, independently of errors in the other symbols. How small should n be in order
for the probability of incorrect transmission (at least one symbol in error) to be less
than 0.001?

Each symbol transmission is viewed as an independent Bernoulli trial. Thus,
the probability of a positive number S of errors in the packet is

1 − P(S = 0) = 1 − (1 − p)n.

For this probability to be less than 0.001, we must have 1 − (1 − 0.0001)n < 0.001
or

n <
ln 0.999

ln 0.9999
= 10.0045.

We can also use the Poisson approximation for P(S = 0), which is e−λ with λ =
np = 0.0001 · n, and obtain the condition 1 − e−0.0001·n < 0.001, which leads to

n <
− ln 0.999

0.0001
= 10.005.

Given that n must be integer, both methods lead to the same conclusion that n
can be at most 10.
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5.2 THE POISSON PROCESS

The Poisson process can be viewed as a continuous-time analog of the Bernoulli
process and applies to situations where there is no natural way of dividing time
into discrete periods.

To see the need for a continuous-time version of the Bernoulli process, let
us consider a possible model of traffic accidents within a city. We can start by
discretizing time into one-minute periods and record a “success” during every
minute in which there is at least one traffic accident. Assuming the traffic in-
tensity to be constant over time, the probability of an accident should be the
same during each period. Under the additional (and quite plausible) assumption
that different time periods are independent, the sequence of successes becomes a
Bernoulli process. Note that in real life, two or more accidents during the same
one-minute interval are certainly possible, but the Bernoulli process model does
not keep track of the exact number of accidents. In particular, it does not allow
us to calculate the expected number of accidents within a given period.

One way around this difficulty is to choose the length of a time period to be
very small, so that the probability of two or more accidents becomes negligible.
But how small should it be? A second? A millisecond? Instead of answering
this question, it is preferable to consider a limiting situation where the length of
the time period becomes zero, and work with a continuous time model.

We consider an arrival process that evolves in continuous time, in the sense
that any real number t is a possible arrival time. We define

P (k, τ) = P(there are exactly k arrivals during an interval of length τ),

and assume that this probability is the same for all intervals of the same length
τ . We also introduce a positive parameter λ to be referred to as the arrival
rate or intensity of the process, for reasons that will soon be apparent.

Definition of the Poisson Process

An arrival process is called a Poisson process with rate λ if it has the fol-
lowing properties:

(a) (Time-homogeneity.) The probability P (k, τ) of k arrivals is the
same for all intervals of the same length τ .

(b) (Independence.) The number of arrivals during a particular interval
is independent of the history of arrivals outside this interval.

(c) (Small interval probabilities.) The probabilities P (k, τ) satisfy

P (0, τ) = 1 − λτ + o(τ),
P (1, τ) = λτ + o1(τ).



16 Stochastic Processes Chap. 5

Here, o(τ) and o1(τ) are functions of τ that satisfy

lim
τ→0

o(τ)
τ

= 0, lim
τ→0

o1(τ)
τ

= 0.

The first property states that arrivals are “equally likely” at all times. The
arrivals during any time interval of length τ are statistically the same, in the
sense that they obey the same probability law. This is a counterpart of the
assumption that the success probability p in a Bernoulli process is constant over
time.

To interpret the second property, consider a particular interval [t, t′], of
length t′ − t. The unconditional probability of k arrivals during that interval
is P (k, t′ − t). Suppose now that we are given complete or partial information
on the arrivals outside this interval. Property (b) states that this information
is irrelevant: the conditional probability of k arrivals during [t, t′] remains equal
to the unconditional probability P (k, t′ − t). This property is analogous to the
independence of trials in a Bernoulli process.

The third property is critical. The o(τ) and o1(τ) terms are meant to be
negligible in comparison to τ , when the interval length τ is very small. They can
be thought of as the O(τ2) terms in a Taylor series expansion of P (k, τ). Thus,
for small τ , the probability of a single arrival is roughly λτ , plus a negligible
term. Similarly, for small τ , the probability of zero arrivals is roughly 1 − λτ .
Note that the probability of two or more arrivals is

1 − P (0, τ) − P (1, τ) = −o(τ) − o1(τ),

and is negligible in comparison to P (1, τ) as τ gets smaller and smaller.

Time0
x x x

δ

Arrivals

probability of success
per period:
p =λδ

δ δδ δ δ δ δ

τ

number of
periods:
n=τ/δ

expected number
of arrivals:
np=λτ

Figure 5.5: Bernoulli approximation of the Poisson process.

Let us now start with a fixed time interval of length τ and partition it
into τ/δ periods of length δ, where δ is a very small number; see Fig. 5.5. The
probability of more than two arrivals during any period can be neglected, because
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of property (c) and the preceding discussion. Different periods are independent,
by property (b). Furthermore, each period has one arrival with probability
approximately equal to λδ, or zero arrivals with probability approximately equal
to 1 − λδ. Therefore, the process being studied can be approximated by a
Bernoulli process, with the approximation becoming more and more accurate
the smaller δ is chosen. Thus the probability P (k, τ) of k arrivals in time τ , is
approximately the same as the (binomial) probability of k successes in n = τ/δ
independent Bernoulli trials with success probability p = λδ at each trial. While
keeping the length τ of the interval fixed, we let the period length δ decrease
to zero. We then note that the number n of periods goes to infinity, while the
product np remains constant and equal to λτ . Under these circumstances, we
saw in the previous section that the binomial PMF converges to a Poisson PMF
with parameter λτ . We are then led to the important conclusion that

P (k, τ) =
(λτ)ke−λτ

k!
, k = 0, 1, . . . .

Note that a Taylor series expansion of e−λτ , yields

P (0, τ) = e−λτ = 1 − λτ + O(τ2)
P (1, τ) = λτe−λτ = λτ − λ2τ2 + O(τ3) = λτ + O(τ2),

consistent with property (c).
Using our earlier formulas for the mean and variance of the Poisson PMF,

we obtain
E[Nτ ] = λτ, var(Nτ ) = λτ,

where Nτ stands for the number of arrivals during a time interval of length τ .
These formulas are hardly surprising, since we are dealing with the limit of a
binomial PMF with parameters n = τ/δ, p = λδ, mean np = λτ , and variance
np(1 − p) ≈ np = λτ .

Let us now derive the probability law for the time T of the first arrival,
assuming that the process starts at time zero. Note that we have T > t if and
only if there are no arrivals during the interval [0, t]. Therefore,

FT (t) = P(T ≤ t) = 1 − P(T > t) = 1 − P (0, t) = 1 − e−λt, t ≥ 0.

We then differentiate the CDF FT (t) of T , and obtain the PDF formula

fT (t) = λe−λt, t ≥ 0,

which shows that the time until the first arrival is exponentially distributed with
parameter λ. We summarize this discussion in the table that follows. See also
Fig. 5.6.
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Random Variables Associated with the Poisson Process and their
Properties

• The Poisson with parameter λτ . This is the number Nτ of arrivals
in a Poisson process with rate λ, over an interval of length τ . Its PMF,
mean, and variance are

pNτ (k) = P (k, τ) =
(λτ)ke−λτ

k!
, k = 0, 1, . . . .

E[Nτ ] = λτ, var(Nτ ) = λτ.

• The exponential with parameter λ. This is the time T until the
first arrival. Its PDF, mean, and variance are

fT (t) = λe−λt, t ≥ 0, E[T ] =
1
λ

, var(T ) =
1
λ2

.

Time0
x x x

δ

Arrivals

p =λδδ δδ δ δ δ δ

POISSON BERNOULLI

Times of Arrival Continuous Discrete

PMF of # of Arrivals Poisson Binomial

Interarrival Time CDF Exponential Geometric

Arrival Rate λ/unit time p/per trial

Figure 5.6: View of the Bernoulli process as the discrete-time version of the
Poisson. We discretize time in small intervals δ and associate each interval with
a Bernoulli trial whose parameter is p = λδ. The table summarizes some of the
basic correspondences.
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Example 5.7. You get email according to a Poisson process at a rate of λ = 0.2
messages per hour. You check your email every hour. What is the probability of
finding 0 and 1 new messages?

These probabilities can be found using the Poisson PMF (λτ)ke−λτ/k!, with
τ = 1, and k = 0 or k = 1:

P(0, 1) = e−0.2 = 0.819, P(1, 1) = 0.2 · e−0.2 = 0.164

Suppose that you have not checked your email for a whole day. What is the
probability of finding no new messages? We use again the Poisson PMF and obtain

P(0, 24) = e−0.2·24 = 0.008294.

Alternatively, we can argue that the event of no messages in a 24-hour period is
the intersection of the events of no messages during each of 24 hours. These latter
events are independent and the probability of each is P(0, 1) = e−0.2, so

P(0, 24) =
(
P(0, 1)

)24
=

(
e−0.2

)24
= 0.008294,

which is consistent with the preceding calculation method.

Example 5.8. Sum of Independent Poisson Random Variables. Arrivals
of customers at the local supermarket are modeled by a Poisson process with a
rate of λ = 10 customers per minute. Let M be the number of customers arriving
between 9:00 and 9:10. Also, let N be the number of customers arriving between
9:30 and 9:35. What is the distribution of M + N?

We notice that M is Poisson with parameter µ = 10·10 = 100 and N is Poisson
with parameter ν = 10 ·5 = 50. Furthermore, M and N are independent. As shown
in Section 4.1, using transforms, M +N is Poisson with parameter µ+ν = 150. We
will now proceed to derive the same result in a more direct and intuitive manner.

Let Ñ be the number of customers that arrive between 9:10 and 9:15. Note
that Ñ has the same distribution as N (Poisson with parameter 50). Furthermore,
Ñ is also independent of N . Thus, the distribution of M + N is the same as the
distribution of M + Ñ . But M + Ñ is the number of arrivals during an interval of
length 15, and has therefore a Poisson distribution with parameter 10 · 15 = 150.

This example makes a point that is valid in general. The probability of k
arrivals during a set of times of total length τ is always given by P (k, τ), even if
that set is not an interval. (In this example, we dealt with the set [9 : 00, 9 : 10]∪[9 :
30, 9 : 35], of total length 15.)

Example 5.9. During rush hour, from 8 am to 9 am, traffic accidents occur
according to a Poisson process with a rate µ of 5 accidents per hour. Between 9
am and 11 am, they occur as an independent Poisson process with a rate ν of 3
accidents per hour. What is the PMF of the total number of accidents between 8
am and 11 am?



20 Stochastic Processes Chap. 5

This is the sum of two independent Poisson random variables with parameters
5 and 3·2 = 6, respectively. Since the sum of independent Poisson random variables
is also Poisson, the total number of accidents has a Poisson PMF with parameter
5+6=11.

Independence and Memorylessness

The Poisson process has several properties that parallel those of the Bernoulli
process, including the independence of nonoverlapping time sets, a fresh-start
property, and the memorylessness of the interarrival time distribution. Given
that the Poisson process can be viewed as a limiting case of a Bernoulli process,
the fact that it inherits the qualitative properties of the latter should be hardly
surprising.

(a) Independence of nonoverlapping sets of times. Consider two disjoint
sets of times A and B, such as A = [0, 1] ∪ [4,∞) and B = [1.5, 3.6], for
example. If U and V are random variables that are completely determined
by what happens during A (respectively, B), then U and V are indepen-
dent. This is a consequence of the second defining property of the Poisson
process.

(b) Fresh-start property. As a special case of the preceding observation, we
notice that the history of the process until a particular time t is independent
from the future of the process. Furthermore, if we focus on that portion
of the Poisson process that starts at time t, we observe that it inherits the
defining properties of the original process. For this reason, the portion of
the Poisson process that starts at any particular time t > 0 is a probabilistic
replica of the Poisson process starting at time 0, and is independent of the
portion of the process prior to time t. Thus, we can say that the Poisson
process starts afresh at each time instant.

(c) Memoryless interarrival time distribution. We have already seen that
the geometric PMF (interarrival time in the Bernoulli process) is memo-
ryless: the number of remaining trials until the first future arrival does
not depend on the past. The exponential PDF (interarrival time in the
Poisson process) has a similar property: given the current time t and the
past history, the future is a fresh-starting Poisson process, hence the re-
maining time until the next arrival has the same exponential distribution.
In particular, if T is the time of the first arrival and if we are told that
T > t, then the remaining time T − t is exponentially distributed, with the
same parameter λ. For an algebraic derivation of this latter fact, we first
use the exponential CDF to obtain P(T > t) = e−λt. We then note that
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for all positive scalars s and t, we have

P(T > t + s |T > t) =
P(T > t + s, T > t)

P(T > t)

=
P(T > t + s)

P(T > t)

=
e−λ(t+s)

e−λt

= e−λs.

Here are some examples of reasoning based on the memoryless property.

Example 5.10. You and your partner go to a tennis court, and have to wait until
the players occupying the court finish playing. Assume (somewhat unrealistically)
that their playing time has an exponential PDF. Then the PDF of your waiting
time (equivalently, their remaining playing time) also has the same exponential
PDF, regardless of when they started playing.

Example 5.11. When you enter the bank, you find that all three tellers are busy
serving other customers, and there are no other customers in queue. Assume that
the service times for you and for each of the customers being served are independent
identically distributed exponential random variables. What is the probability that
you will be the last to leave?

The answer is 1/3. To see this, focus at the moment when you start service
with one of the tellers. Then, the remaining time of each of the other two customers
being served, as well as your own remaining time, have the same PDF. Therefore,
you and the other two customers have equal probability 1/3 of being the last to
leave.

Interarrival Times

An important random variable associated with a Poisson process that starts at
time 0, is the time of the kth arrival, which we denote by Yk. A related random
variable is the kth interarrival time, denoted by Tk. It is defined by

T1 = Y1, Tk = Yk − Yk−1, k = 2, 3, . . .

and represents the amount of time between the k−1st and the kth arrival. Note
that

Yk = T1 + T2 + · · · + Tk.

We have already seen that the time T1 until the first arrival is an exponen-
tial random variable with parameter λ. Starting from the time T1 of the first
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arrival, the future is a fresh-starting Poisson process. Thus, the time until the
next arrival has the same exponential PDF. Furthermore, the past of the process
(up to time T1) is independent of the future (after time T1). Since T2 is deter-
mined exclusively by what happens in the future, we see that T2 is independent
of T1. Continuing similarly, we conclude that the random variables T1, T2, T3, . . .
are independent and all have the same exponential distribution.

This important observation leads to an alternative, but equivalent, way of
describing the Poisson process.†

Alternative Description of the Poisson Process

1. Start with a sequence of independent exponential random variables
T1, T2,. . ., with common parameter λ, and let these stand for the in-
terarrival times.

2. Record an arrival at times T1, T1 + T2, T1 + T2 + T3, etc.

The kth Arrival Time

The time Yk of the kth arrival is equal to the sum Yk = T1 + T2 + · · · + Tk of
k independent identically distributed exponential random variables. This allows
us to derive formulas for the mean, variance, and PMF of Yk, which are given in
the table that follows.

Properties of the kth Arrival Time

• The kth arrival time is equal to the sum of the first k interarrival times

Yk = T1 + T2 + · · · + Tk,

and the latter are independent exponential random variables with com-
mon parameter λ.

† In our original definition, a process was called Poisson if it possessed certain
properties. However, the astute reader may have noticed that we have not so far
established that there exists a process with the required properties. In an alternative
line of development, we could have defined the Poisson process by the alternative
description given here, and such a process is clearly well-defined: we start with a
sequence of independent interarrival times, from which the arrival times are completely
determined. Starting with this definition, it is then possible to establish that the
process satisfies all of the properties that were postulated in our original definition.
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• The mean and variance of Yk are given by

E[Yk] = E[T1] + · · · + E[Tk] =
k

λ
,

var(Yk) = var(T1) + · · · + var(Tk) =
k

λ2
.

• The PDF of Yk is given by

fYk
(y) =

λkyk−1e−λy

(k − 1)!

and is known as the Erlang PDF of order k.

To evaluate the PDF fYk
of Yk, we can argue that for a small δ, the product

δ ·fYk
(y) is the probability that the kth arrival occurs between times y and y+δ.†

When δ is very small, the probability of more than one arrival during the interval
[y, y + δ] is negligible. Thus, the kth arrival occurs between y and y + δ if and
only if the following two events A and B occur:

(a) event A: there is an arrival during the interval [y, y + δ];

(b) event B: there are exactly k − 1 arrivals before time y.

The probabilities of these two events are

P(A) ≈ λδ, and P(B) = P (k − 1, y) =
λk−1yk−1e−λy

(k − 1)!
.

† For an alternative derivation that does not rely on approximation arguments,
note that for a given y ≥ 0, the event

{
Yk ≤ y

}
is the same as the event

{number of arrivals in the interval [0, y] ≥ k}.

Thus the CDF of Yk is given by

FYk
(y) = P

(
Yk ≤ y

)
=

∞∑
n=k

P (n, y) = 1 −
k−1∑
n=0

P (n, y) = 1 −
k−1∑
n=0

(λy)ne−λy

n!
.

The PDF of Yk can be obtained by differentiating the above expression, which by
straightforward calculation yields the Erlang PDF formula

fYk
(y) =

d

dy
FYk

(y) =
λkyk−1e−λy

(k − 1)!
.
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Since A and B are independent, we have

δfYk
(y) ≈ P(y ≤ Yk ≤ y + δ) ≈ P(A ∩ B) = P(A)P(B) ≈ λδ

λk−1yk−1e−λy

(k − 1)!
,

from which we obtain

fYk
(y) =

λkyk−1e−λy

(k − 1)!
, y ≥ 0.

Example 5.12. You call the IRS hotline and you are told that you are the
56th person in line, excluding the person currently being served. Callers depart
according to a Poisson process with a rate of λ = 2 per minute. How long will you
have to wait on the average until your service starts, and what is the probability
you will have to wait for more than an hour?

By the memoryless property, the remaining service time of the person cur-
rently being served is exponentially distributed with parameter 2. The service times
of the 55 persons ahead of you are also exponential with the same parameter, and
all of these random variables are independent. Thus, your waiting time Y is Erlang
of order 56, and

E[Y ] =
56

λ
= 28.

The probability that you have to wait for more than an hour is given by the formula

P(Y ≥ 60) =

∫ ∞

60

λ56y55e−λy

55!
dy.

Computing this probability is quite tedious. In Chapter 7, we will discuss a much
easier way to compute approximately this probability. This is done using the central
limit theorem, which allows us to approximate the CDF of the sum of a large number
of random variables with a normal CDF and then to calculate various probabilities
of interest by using the normal tables.

Splitting and Merging of Poisson Processes

Similar to the case of a Bernoulli process, we can start with a Poisson process
with rate λ and split it, as follows: each arrival is kept with probability p and
discarded with probability 1−p, independently of what happens to other arrivals.
In the Bernoulli case, we saw that the result of the splitting was also a Bernoulli
process. In the present context, the result of the splitting turns out to be a
Poisson process with rate λp.

Alternatively, we can start with two independent Poisson processes, with
rates λ1 and λ2, and merge them by recording an arrival whenever an arrival
occurs in either process. It turns out that the merged process is also Poisson
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with rate λ1 + λ2. Furthermore, any particular arrival of the merged process
has probability λ1/(λ1 +λ2) of originating from the first process and probability
λ2/(λ1 + λ2) of originating from the second, independently of all other arrivals
and their origins.

We discuss these properties in the context of some examples, and at the
same time provide a few different arguments to establish their validity.

Example 5.13. Splitting of Poisson Processes. A packet that arrives at a
node of a data network is either a local packet which is destined for that node (this
happens with probability p), or else it is a transit packet that must be relayed to
another node (this happens with probability 1 − p). Packets arrive according to a
Poisson process with rate λ, and each one is a local or transit packet independently
of other packets and of the arrival times. As stated above, the process of local
packet arrivals is Poisson with rate λp. Let us see why.

We verify that the process of local packet arrivals satisfies the defining prop-
erties of a Poisson process. Since λ and p are constant (do not change with time),
the first property (time homogeneity) clearly holds. Furthermore, there is no de-
pendence between what happens in disjoint time intervals, verifying the second
property. Finally, if we focus on an interval of small length δ, the probability of
a local arrival is approximately the probability that there is a packet arrival, and
that this turns out to be a local one, i.e., λδ · p. In addition, the probability of
two or more local arrivals is negligible in comparison to δ, and this verifies the
third property. We conclude that local packet arrivals form a Poisson process and,
in particular, the number Lτ of such arrivals during an interval of length τ has a
Poisson PMF with parameter pλτ .

Let us now rederive the Poisson PMF of Lτ using transforms. The total
number of packets Nτ during an interval of length τ is Poisson with parameter λτ .
For i = 1, . . . , Nτ , let Xi be a Bernoulli random variable which is 1 if the ith packet
is local, and 0 if not. Then, the random variables X1, X2, . . . form a Bernoulli
process with success probability p. The number of local packets is the number of
“successes,” i.e.,

Lτ = X1 + · · · + XNτ .

We are dealing here with the sum of a random number of independent random
variables. As discussed in Section 4.4, the transform associated with Lτ is found
by starting with the transform associated with Nτ , which is

MNτ (s) = eλτ(es−1),

and replacing each occurrence of es by the transform associated with Xi, which is

MX(s) = 1 − p + pes.

We obtain
MLτ (s) = eλτ(1−p+pes−1) = eλτp(es−1).

We observe that this is the transform of a Poisson random variable with parameter
λτp, thus verifying our earlier statement for the PMF of Lτ .
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We conclude with yet another method for establishing that the local packet
process is Poisson. Let T1, T2, . . . be the interarrival times of packets of any type;
these are independent exponential random variables with parameter λ. Let K be
the total number of arrivals up to and including the first local packet arrival. In
particular, the time S of the first local packet arrival is given by

S = T1 + T2 + · · · + TK .

Since each packet is a local one with probability p, independently of the others, and
by viewing each packet as a trial which is successful with probability p, we recognize
K as a geometric random variable with parameter p. Since the nature of the packets
is independent of the arrival times, K is independent from the interarrival times. We
are therefore dealing with a sum of a random (geometrically distributed) number of
exponential random variables. We have seen in Chapter 4 (cf. Example 4.21) that
such a sum is exponentially distributed with parameter λp. Since the interarrival
times between successive local packets are clearly independent, it follows that the
local packet arrival process is Poisson with rate λp.

Example 5.14. Merging of Poisson Processes. People with letters to mail
arrive at the post office according to a Poisson process with rate λ1, while people
with packages to mail arrive according to an independent Poisson process with rate
λ2. As stated earlier the merged process, which includes arrivals of both types, is
Poisson with rate λ1 + λ2. Let us see why.

First, it should be clear that the merged process satisfies the time-homogeneity
property. Furthermore, since different intervals in each of the two arrival processes
are independent, the same property holds for the merged process. Let us now focus
on a small interval of length δ. Ignoring terms that are negligible compared to δ,
we have

P(0 arrivals in the merged process) ≈ (1 − λ1δ)(1 − λ2δ) ≈ 1 − (λ1 + λ2)δ,

P(1 arrival in the merged process) ≈ λ1δ(1 − λ2δ) + (1 − λ1δ)λ2δ ≈ (λ1 + λ2)δ,

and the third property has been verified.
Given that an arrival has just been recorded, what is the probability that it

is an arrival of a person with a letter to mail? We focus again on a small interval
of length δ around the current time, and we seek the probability

P(1 arrival of person with a letter | 1 arrival).

Using the definition of conditional probabilities, and ignoring the negligible proba-
bility of more than one arrival, this is

P(1 arrival of person with a letter)

P(1 arrival)
≈ λ1δ

(λ1 + λ2)δ
=

λ1

λ1 + λ2
.

Example 5.15. Competing Exponentials. Two light bulbs have independent
and exponentially distributed lifetimes T (1) and T (2), with parameters λ1 and λ2,
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respectively. What is the distribution of the first time Z = min{T (1), T (2)} at which
a bulb burns out?

We can treat this as an exercise in derived distributions. For all z ≥ 0, we
have,

FZ(z) = P
(
min{T (1), T (2)} ≤ z

)
= 1 − P

(
min{T (1), T (2)} > z

)
= 1 − P(T (1) > z, T (2) > z)

= 1 − P(T (1) > z)P(T (2) > z)

= 1 − e−λ1ze−λ2z

= 1 − e−(λ1+λ2)z.

This is recognized as the exponential CDF with parameter λ1 +λ2. Thus, the mini-
mum of two independent exponentials with parameters λ1 and λ2 is an exponential
with parameter λ1 + λ2.

For a more intuitive explanation of this fact, let us think of T (1) (respectively,
T (2)) as the times of the first arrival in two independent Poisson process with rate
λ1 (respectively, T (2)). If we merge these two Poisson processes, the first arrival
time will be min{T (1), T (2)}. But we already know that the merged process is
Poisson with rate λ1 +λ2, and it follows that the first arrival time, min{T (1), T (2)},
is exponential with parameter λ1 + λ2.

The preceding discussion can be generalized to the case of more than two
processes. Thus, the total arrival process obtained by merging the arrivals of
n independent Poisson processes with arrival rates λ1, . . . , λn is Poisson with
arrival rate equal to the sum λ1 + · · · + λn.

Example 5.16. More on Competing Exponentials. Three light bulbs have
independent exponentially distributed lifetimes with a common parameter λ. What
is the expectation of the time until the last bulb burns out?

We think of the times when each bulb burns out as the first arrival times
in independent Poisson processes. In the beginning, we have three bulbs, and the
merged process has rate 3λ. Thus, the time T1 of the first burnout is exponential
with parameter 3λ, and mean 1/3λ. Once a bulb burns out, and because of the
memorylessness property of the exponential distribution, the remaining lifetimes
of the other two lightbulbs are again independent exponential random variables
with parameter λ. We thus have two Poisson processes running in parallel, and
the remaining time T2 until the first arrival in one of these two processes is now
exponential with parameter 2λ and mean 1/2λ. Finally, once a second bulb burns
out, we are left with a single one. Using memorylessness once more, the remaining
time T3 until the last bulb burns out is exponential with parameter λ and mean
1/λ. Thus, the expectation of the total time is

E[T1 + T2 + T3] =
1

3λ
+

1

2λ
+

1

λ
.
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Note that the random variables T1, T2, T3 are independent, because of memoryless-
ness. This also allows us to compute the variance of the total time:

var(T1 + T2 + T3) = var(T1) + var(T2) + var(T3) =
1

9λ2
+

1

4λ2
+

1

λ2
.

We close by noting a related and quite deep fact, namely that the sum
of a large number of (not necessarily Poisson) independent arrival processes,
can be approximated by a Poisson process with arrival rate equal to the sum of
the individual arrival rates. The component processes must have a small rate
relative to the total (so that none of them imposes its probabilistic character on
the total arrival process) and they must also satisfy some technical mathematical
assumptions. Further discussion of this fact is beyond our scope, but we note
that it is in large measure responsible for the abundance of Poisson-like processes
in practice. For example, the telephone traffic originating in a city consists of
many component processes, each of which characterizes the phone calls placed by
individual residents. The component processes need not be Poisson; some people
for example tend to make calls in batches, and (usually) while in the process of
talking, cannot initiate or receive a second call. However, the total telephone
traffic is well-modeled by a Poisson process. For the same reasons, the process
of auto accidents in a city, customer arrivals at a store, particle emissions from
radioactive material, etc., tend to have the character of the Poisson process.

The Random Incidence Paradox

The arrivals of a Poisson process partition the time axis into a sequence of
interarrival intervals; each interarrival interval starts with an arrival and ends at
the time of the next arrival. We have seen that the lengths of these interarrival
intervals are independent exponential random variables with parameter λ and
mean 1/λ, where λ is the rate of the process. More precisely, for every k, the
length of the kth interarrival interval has this exponential distribution. In this
subsection, we look at these interarrival intervals from a different perspective.

Let us fix a time instant t∗ and consider the length L of the interarrival
interval to which it belongs. For a concrete context, think of a person who shows
up at the bus station at some arbitrary time t∗ and measures the time from the
previous bus arrival until the next bus arrival. The arrival of this person is often
referred to as a “random incidence,” but the reader should be aware that the
term is misleading: t∗ is just a particular time instance, not a random variable.

We assume that t∗ is much larger than the starting time of the Poisson
process so that we can be fairly certain that there has been an arrival prior
to time t∗. To avoid the issue of determining how large a t∗ is large enough,
we can actually assume that the Poisson process has been running forever, so
that we can be fully certain that there has been a prior arrival, and that L is
well-defined. One might superficially argue that L is the length of a “typical”
interarrival interval, and is exponentially distributed, but this turns out to be
false. Instead, we will establish that L has an Erlang PDF of order two.
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This is known as the random incidence phenomenon or paradox, and it can
be explained with the help of Fig. 5.7. Let [U, V ] be the interarrival interval to
which t∗ belongs, so that L = V − U . In particular, U is the time of the first
arrival prior to t∗ and V is the time of the first arrival after t∗. We split L into
two parts,

L = (t∗ − U) + (V − t∗),

where t∗−U is the elapsed time since the last arrival, and V −t∗ is the remaining
time until the next arrival. Note that t∗−U is determined by the past history of
the process (before t∗), while V − t∗ is determined by the future of the process
(after time t∗). By the independence properties of the Poisson process, the
random variables t∗ − U and V − t∗ are independent. By the memorylessness
property, the Poisson process starts fresh at time t∗, and therefore V − t∗ is
exponential with parameter λ. The random variable t∗ − U is also exponential
with parameter λ. The easiest way of seeing this is to realize that if we run a
Poisson process backwards in time it remains Poisson; this is because the defining
properties of a Poisson process make no reference to whether time moves forward
or backward. A more formal argument is obtained by noting that

P(t∗ − U > x) = P
(
no arrivals during [t∗ − x, t∗]

)
= P (0, x) = e−λx, x ≥ 0.

We have therefore established that L is the sum of two independent exponential
random variables with parameter λ, i.e., Erlang of order two, with mean 2/λ.
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Figure 5.7: Illustration of the random incidence phenomenon. For a fixed time
instant t∗, the corresponding interarrival interval [U, V ] consists of the elapsed
time t∗ − U and the remaining time V − t∗. These two times are independent
and are exponentially distributed with parameter λ, so the PDF of their sum is
Erlang of order two.

Random incidence phenomena are often the source of misconceptions and
errors, but these can be avoided with careful probabilistic modeling. The key
issue is that even though interarrival intervals have length 1/λ on the average, an
observer who arrives at an arbitrary time is more likely to fall in a large rather
than a small interarrival interval. As a consequence the expected length seen by
the observer is higher, 2/λ in this case. This point is amplified by the example
that follows.
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Example 5.17. Random incidence in a non-Poisson arrival process. Buses
arrive at a station deterministically, on the hour, and fifteen minutes after the hour.
Thus, the interarrival times alternate between 15 and 45 minutes. The average
interarrival time is 30 minutes. A person shows up at the bus station at a “random”
time. We interpret “random” to mean a time which is uniformly distributed within
a particular hour. Such a person falls into an interarrival interval of length 15 with
probability 1/4, and an interarrival interval of length 45 with probability 3/4. The
expected value of the length of the chosen interarrival interval is

15 · 1

4
+ 45 · 3

4
= 37.5,

which is considerably larger than 30, the average interarrival time.


