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The Bernoulli and Poisson processes studied in the preceding chapter are memo-
ryless, in the sense that the future does not depend on the past: the occurrences
of new “successes” or “arrivals” do not depend on the past history of the process.
In this chapter, we consider processes where the future depends on and can be
predicted to some extent by what has happened in the past.

We emphasize models where the effect of the past on the future is summa-
rized by a state, which changes over time according to given probabilities. We
restrict ourselves to models whose state can take a finite number of values and
can change in discrete instants of time. We want to analyze the probabilistic
properties of the sequence of state values.

The range of applications of the models of this chapter is truly vast. It
includes just about any dynamical system whose evolution over time involves
uncertainty, provided the state of the system is suitably defined. Such systems
arise in a broad variety of fields, such as communications, automatic control,
signal processing, manufacturing, economics, resource allocation, etc.

6.1 DISCRETE-TIME MARKOV CHAINS

We will first consider discrete-time Markov chains, in which the state changes
at certain discrete time instants, indexed by an integer variable n. At each time
step n, the Markov chain has a state, denoted by Xn, which belongs to a finite
set S of possible states, called the state space. Without loss of generality, and
unless there is a statement to the contrary, we will assume that S = {1, . . . , m},
for some positive integer m. The Markov chain is described in terms of its
transition probabilities pij : whenever the state happens to be i, there is
probability pij that the next state is equal to j. Mathematically,

pij = P(Xn+1 = j |Xn = i), i, j ∈ S.

The key assumption underlying Markov processes is that the transition proba-
bilities pij apply whenever state i is visited, no matter what happened in the
past, and no matter how state i was reached. Mathematically, we assume the
Markov property, which requires that

P(Xn+1 = j |Xn = i, Xn−1 = in−1, . . . , X0 = i0) = P(Xn+1 = j |Xn = i)
= pij ,

for all times n, all states i, j ∈ S, and all possible sequences i0, . . . , in−1 of earlier
states. Thus, the probability law of the next state Xn+1 depends on the past
only through the value of the present state Xn.

The transition probabilities pij must be of course nonnegative, and sum to
one:

m∑
j=1

pij = 1, for all i.
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We will generally allow the probabilities pii to be positive, in which case it is
possible for the next state to be the same as the current one. Even though the
state does not change, we still view this as a state transition of a special type (a
“self-transition”).

Specification of Markov Models

• A Markov chain model is specified by identifying
(a) the set of states S = {1, . . . , m},
(b) the set of possible transitions, namely, those pairs (i, j) for which

pij > 0, and,
(c) the numerical values of those pij that are positive.

• The Markov chain specified by this model is a sequence of random
variables X0, X1, X2, . . ., that take values in S and which satisfy

P(Xn+1 = j |Xn = i, Xn−1 = in−1, . . . , X0 = i0) = pij ,

for all times n, all states i, j ∈ S, and all possible sequences i0, . . . , in−1

of earlier states.

All of the elements of a Markov chain model can be encoded in a transition
probability matrix, which is simply a two-dimensional array whose element
at the ith row and jth column is pij :




p11 p12 · · · p1m

p21 p22 · · · p2m

...
...

...
...

pm1 pm2 · · · pmm


 .

It is also helpful to lay out the model in the so-called transition probability
graph, whose nodes are the states and whose arcs are the possible transitions.
By recording the numerical values of pij near the corresponding arcs, one can
visualize the entire model in a way that can make some of its major properties
readily apparent.

Example 6.1. Alice is taking a probability class and in each week she can be
either up-to-date or she may have fallen behind. If she is up-to-date in a given
week, the probability that she will be up-to-date (or behind) in the next week is
0.8 (or 0.2, respectively). If she is behind in the given week, the probability that
she will be up-to-date (or behind) in the next week is 0.6 (or 0.4, respectively). We
assume that these probabilities do not depend on whether she was up-to-date or
behind in previous weeks, so the problem has the typical Markov chain character
(the future depends on the past only through the present).
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Let us introduce states 1 and 2, and identify them with being up-to-date and
behind, respectively. Then, the transition probabilities are

p11 = 0.8, p12 = 0.2, p21 = 0.6, p22 = 0.4,

and the transition probability matrix is

[
0.8 0.2
0.6 0.4

]
.

The transition probability graph is shown in Fig. 6.1.

1 2

Up-to-Date Behind

0.8

0.2

0.4

0.6

Figure 6.1: The transition probability graph in Example 6.1.

Example 6.2. A fly moves along a straight line in unit increments. At each
time period, it moves one unit to the left with probability 0.3, one unit to the right
with probability 0.3, and stays in place with probability 0.4, independently of the
past history of movements. A spider is lurking at positions 1 and m: if the fly
lands there, it is captured by the spider, and the process terminates. We want to
construct a Markov chain model, assuming that the fly starts in one of the positions
2, . . . , m − 1.

Let us introduce states 1, 2, . . . , m, and identify them with the corresponding
positions of the fly. The nonzero transition probabilities are

p11 = 1, pmm = 1,

pij =
{

0.3 if j = i − 1 or j = i + 1,
0.4 if j = i,

for i = 2, . . . , m − 1.

The transition probability graph and matrix are shown in Fig. 6.2.

Given a Markov chain model, we can compute the probability of any partic-
ular sequence of future states. This is analogous to the use of the multiplication
rule in sequential (tree) probability models. In particular, we have

P(X0 = i0, X1 = i1, . . . , Xin = in) = P(X0 = i0)pi0i1pi1i2 · · · pin−1in .
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Figure 6.2: The transition probability graph and the transition probability ma-
trix in Example 6.2, for the case where m = 4.

To verify this property, note that

P(X0 = i0, X1 = i1, . . . , Xin = in)
= P(Xn = in |X0 = i0, . . . , Xn−1 = in−1)P(X0 = i0, . . . , Xn−1 = in−1)
= pin−1inP(X0 = i0, . . . , Xn−1 = in−1),

where the last equality made use of the Markov property. We then apply the
same argument to the term P(X0 = i0, . . . , Xn−1 = in−1) and continue similarly,
until we eventually obtain the desired expression. If the initial state X0 is given
and is known to be equal to some i0, a similar argument yields

P(X1 = i1, . . . , Xin = in |X0 = i0) = pi0i1pi1i2 · · · pin−1in .

Graphically, a state sequence can be identified with a sequence of arcs in the
transition probability graph, and the probability of such a path (given the ini-
tial state) is given by the product of the probabilities associated with the arcs
traversed by the path.

Example 6.3. For the spider and fly example (Example 6.2), we have

P(X1 = 2, X2 = 2, X3 = 3, X4 = 4 |X0 = 2) = p22p22p23p34 = (0.4)2(0.3)2.

We also have

P(X0 = 2, X1 = 2, X2 = 2, X3 = 3, X4 = 4) = P(X0 = 2)p22p22p23p34

= P(X0 = 2)(0.4)2(0.3)2.

Note that in order to calculate a probability of this form, in which there is no
conditioning on a fixed initial state, we need to specify a probability law for the
initial state X0.
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n-Step Transition Probabilities

Many Markov chain problems require the calculation of the probability law of
the state at some future time, conditioned on the current state. This probability
law is captured by the n-step transition probabilities, defined by

rij(n) = P(Xn = j |X0 = i).

In words, rij(n) is the probability that the state after n time periods will be j,
given that the current state is i. It can be calculated using the following basic
recursion, known as the Chapman-Kolmogorov equation.

Chapman-Kolmogorov Equation for the n-Step Transition
Probabilities

The n-step transition probabilities can be generated by the recursive formula

rij(n) =
m∑

k=1

rik(n − 1)pkj , for n > 1, and all i, j,

starting with
rij(1) = pij .

To verify the formula, we apply the total probability theorem as follows:

P(Xn = j |X0 = i) =
m∑

k=1

P(Xn−1 = k |X0 = i) · P(Xn = j |Xn−1 = k, X0 = i)

=
m∑

k=1

rik(n − 1)pkj ;

see Fig. 6.3 for an illustration. We have used here the Markov property: once
we condition on Xn−1 = k, the conditioning on X0 = i does not affect the
probability pkj of reaching j at the next step.

We can view rij(n) as the element at the ith row and jth column of a two-
dimensional array, called the n-step transition probability matrix.† Figures

† Those readers familiar with matrix multiplication, may recognize that the
Chapman-Kolmogorov equation can be expressed as follows: the matrix of n-step tran-
sition probabilities rij(n) is obtained by multiplying the matrix of (n − 1)-step tran-
sition probabilities rik(n − 1), with the one-step transition probability matrix. Thus,
the n-step transition probability matrix is the nth power of the transition probability
matrix.
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Figure 6.3: Derivation of the Chapman-Kolmogorov equation. The probability
of being at state j at time n is the sum of the probabilities rik(n − 1)pkj of the
different ways of reaching j.
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Sequence of n -step transition probability matrices

 n-step transition probabilities as a function of the  numbern  of transitions

0
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0.25

n

r11(n)

r12(n)

0

0.75

0.25

n

r22(n)
r21(n)

Figure 6.4: n-step transition probabilities for the “up-to-date/behind” Example
6.1. Observe that as n → ∞, rij(n) converges to a limit that does not depend on
the initial state.

6.4 and 6.5 give the n-step transition probabilities rij(n) for the cases of Ex-
amples 6.1 and 6.2, respectively. There are some interesting observations about
the limiting behavior of rij(n) in these two examples. In Fig. 6.4, we see that
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each rij(n) converges to a limit, as n → ∞, and this limit does not depend on
the initial state. Thus, each state has a positive “steady-state” probability of
being occupied at times far into the future. Furthermore, the probability rij(n)
depends on the initial state i when n is small, but over time this dependence
diminishes. Many (but by no means all) probabilistic models that evolve over
time have such a character: after a sufficiently long time, the effect of their initial
condition becomes negligible.

In Fig. 6.5, we see a qualitatively different behavior: rij(n) again converges,
but the limit depends on the initial state, and can be zero for selected states.
Here, we have two states that are “absorbing,” in the sense that they are infinitely
repeated, once reached. These are the states 1 and 4 that correspond to the
capture of the fly by one of the two spiders. Given enough time, it is certain
that some absorbing state will be reached. Accordingly, the probability of being
at the non-absorbing states 2 and 3 diminishes to zero as time increases.
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. . . .
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Sequence of transition probability matrices

 n-step transition probabilities as a function of the  time n
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1/3
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Figure 6.5: n-step transition probabilities for the “spiders-and-fly” Example 6.2.
Observe that rij(n) converges to a limit that depends on the initial state.

These examples illustrate that there is a variety of types of states and
asymptotic occupancy behavior in Markov chains. We are thus motivated to
classify and analyze the various possibilities, and this is the subject of the next
three sections.
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6.2 CLASSIFICATION OF STATES

In the preceding section, we saw through examples several types of Markov chain
states with qualitatively different characteristics. In particular, some states, after
being visited once, are certain to be revisited again, while for some other states
this may not be the case. In this section, we focus on the mechanism by which
this occurs. In particular, we wish to classify the states of a Markov chain with
a focus on the long-term frequency with which they are visited.

As a first step, we make the notion of revisiting a state precise. Let us say
that a state j is accessible from a state i if for some n, the n-step transition
probability rij(n) is positive, i.e., if there is positive probability of reaching j,
starting from i, after some number of time periods. An equivalent definition is
that there is a possible state sequence i, i1, . . . , in−1, j, that starts at i and ends
at j, in which the transitions (i, i1), (i1, i2), . . . , (in−2, in−1), (in−1, j) all have
positive probability. Let A(i) be the set of states that are accessible from i. We
say that i is recurrent if for every j that is accessible from i, i is also accessible
from j; that is, for all j that belong to A(i) we have that i belongs to A(j).

When we start at a recurrent state i, we can only visit states j ∈ A(i)
from which i is accessible. Thus, from any future state, there is always some
probability of returning to i and, given enough time, this is certain to happen.
By repeating this argument, if a recurrent state is visited once, it will be revisited
an infinite number of times.

A state is called transient if it is not recurrent. In particular, there are
states j ∈ A(i) such that i is not accessible from j. After each visit to state i,
there is positive probability that the state enters such a j. Given enough time,
this will happen, and state i cannot be visited after that. Thus, a transient state
will only be visited a finite number of times.

Note that transience or recurrence is determined by the arcs of the tran-
sition probability graph [those pairs (i, j) for which pij > 0] and not by the
numerical values of the pij . Figure 6.6 provides an example of a transition prob-
ability graph, and the corresponding recurrent and transient states.

1 2 3 4

Recurrent RecurrentRecurrentTransient

Figure 6.6: Classification of states given the transition probability graph. Start-
ing from state 1, the only accessible state is itself, and so 1 is a recurrent state.
States 1, 3, and 4 are accessible from 2, but 2 is not accessible from any of them,
so state 2 is transient. States 3 and 4 are accessible only from each other (and
themselves), and they are both recurrent.

If i is a recurrent state, the set of states A(i) that are accessible from i
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form a recurrent class (or simply class), meaning that states in A(i) are all
accessible from each other, and no state outside A(i) is accessible from them.
Mathematically, for a recurrent state i, we have A(i) = A(j) for all j that belong
to A(i), as can be seen from the definition of recurrence. For example, in the
graph of Fig. 6.6, states 3 and 4 form a class, and state 1 by itself also forms a
class.

It can be seen that at least one recurrent state must be accessible from any
given transient state. This is intuitively evident, and a more precise justification
is given in the theoretical problems section. It follows that there must exist
at least one recurrent state, and hence at least one class. Thus, we reach the
following conclusion.

Markov Chain Decomposition

• A Markov chain can be decomposed into one or more recurrent classes,
plus possibly some transient states.

• A recurrent state is accessible from all states in its class, but is not
accessible from recurrent states in other classes.

• A transient state is not accessible from any recurrent state.

• At least one, possibly more, recurrent states are accessible from a given
transient state.

Figure 6.7 provides examples of Markov chain decompositions. Decompo-
sition provides a powerful conceptual tool for reasoning about Markov chains
and visualizing the evolution of their state. In particular, we see that:

(a) once the state enters (or starts in) a class of recurrent states, it stays within
that class; since all states in the class are accessible from each other, all
states in the class will be visited an infinite number of times;

(b) if the initial state is transient, then the state trajectory contains an ini-
tial portion consisting of transient states and a final portion consisting of
recurrent states from the same class.

For the purpose of understanding long-term behavior of Markov chains, it is im-
portant to analyze chains that consist of a single recurrent class. For the purpose
of understanding short-term behavior, it is also important to analyze the mech-
anism by which any particular class of recurrent states is entered starting from a
given transient state. These two issues, long-term and short-term behavior, are
the focus of Sections 6.3 and 6.4, respectively.

Periodicity

One more characterization of a recurrent class is of special interest, and relates
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1 2 3 4

Single class of recurrent states

1 2

3

Single class of recurrent states (1 and 2)
and one transient state (3)

Two  classes of recurrent states 
(class of state1 and class of states 4 and 5)
and two transient states (2 and 3)

1 2 3 4 5

Figure 6.7: Examples of Markov chain decompositions into recurrent classes and
transient states.

to the presence or absence of a certain periodic pattern in the times that a state
is visited. In particular, a recurrent class is said to be periodic if its states can
be grouped in d > 1 disjoint subsets S1, . . . , Sd so that all transitions from one
subset lead to the next subset; see Fig. 6.8. More precisely,

if i ∈ Sk and pij > 0, then
{

j ∈ Sk+1, if k = 1, . . . , d − 1,
j ∈ S1, if k = d.

A recurrent class that is not periodic, is said to be aperiodic.
Thus, in a periodic recurrent class, we move through the sequence of subsets

in order, and after d steps, we end up in the same subset. As an example, the
recurrent class in the second chain of Fig. 6.7 (states 1 and 2) is periodic, and
the same is true of the class consisting of states 4 and 5 in the third chain of Fig.
6.7. All other classes in the chains of this figure are aperiodic.
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4

5

S1

S3

S2

Figure 6.8: Structure of a periodic recurrent class.

Note that given a periodic recurrent class, a positive time n, and a state j in
the class, there must exist some state i such that rij(n) = 0. The reason is that,
from the definition of periodicity, the states are grouped in subsets S1, . . . , Sd,
and the subset to which j belongs can be reached at time n from the states in
only one of the subsets. Thus, a way to verify aperiodicity of a given recurrent
class R, is to check whether there is a special time n ≥ 1 and a special state
s ∈ R that can be reached at time n from all initial states in R, i.e., ris(n) > 0
for all i ∈ R. As an example, consider the first chain in Fig. 6.7. State s = 2
can be reached at time n = 2 starting from every state, so the unique recurrent
class of that chain is aperiodic.

A converse statement, which we do not prove, also turns out to be true:
if a recurrent class is not periodic, then a time n and a special state s with the
above properties can always be found.

Periodicity

Consider a recurrent class R.

• The class is called periodic if its states can be grouped in d > 1
disjoint subsets S1, . . . , Sd, so that all transitions from Sk lead to Sk+1

(or to S1 if k = d).

• The class is aperiodic (not periodic) if and only if there exists a time
n and a state s in the class, such that pis(n) > 0 for all i ∈ R.
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6.3 STEADY-STATE BEHAVIOR

In Markov chain models, we are often interested in long-term state occupancy
behavior, that is, in the n-step transition probabilities rij(n) when n is very
large. We have seen in the example of Fig. 6.4 that the rij(n) may converge to
steady-state values that are independent of the initial state, so to what extent
is this behavior typical?

If there are two or more classes of recurrent states, it is clear that the
limiting values of the rij(n) must depend on the initial state (visiting j far into
the future will depend on whether j is in the same class as the initial state i).
We will, therefore, restrict attention to chains involving a single recurrent class,
plus possibly some transient states. This is not as restrictive as it may seem,
since we know that once the state enters a particular recurrent class, it will stay
within that class. Thus, asymptotically, the presence of all classes except for one
is immaterial.

Even for chains with a single recurrent class, the rij(n) may fail to converge.
To see this, consider a recurrent class with two states, 1 and 2, such that from
state 1 we can only go to 2, and from 2 we can only go to 1 (p12 = p21 = 1).
Then, starting at some state, we will be in that same state after any even number
of transitions, and in the other state after any odd number of transitions. What
is happening here is that the recurrent class is periodic, and for such a class, it
can be seen that the rij(n) generically oscillate.

We now assert that for every state j, the n-step transition probabilities
rij(n) approach a limiting value that is independent of i, provided we exclude
the two situations discussed above (multiple recurrent classes and/or a periodic
class). This limiting value, denoted by πj , has the interpretation

πj ≈ P(Xn = j), when n is large,

and is called the steady-state probability of j. The following is an important
theorem. Its proof is quite complicated and is outlined together with several
other proofs in the theoretical problems section.

Steady-State Convergence Theorem

Consider a Markov chain with a single recurrent class, which is aperiodic.
Then, the states j are associated with steady-state probabilities πj that
have the following properties.

(a) lim
n→∞

rij(n) = πj , for all i, j.
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(b) The πj are the unique solution of the system of equations below:

πj =
m∑

k=1

πkpkj , j = 1, . . . , m,

1 =
m∑

k=1

πk.

(c) We have
πj = 0, for all transient states j,

πj > 0, for all recurrent states j.

Since the steady-state probabilities πj sum to 1, they form a probability
distribution on the state space, called the stationary distribution of the chain.
The reason for the name is that if the initial state is chosen according to this
distribution, i.e., if

P(X0 = j) = πj , j = 1, . . . , m,

then, using the total probability theorem, we have

P(X1 = j) =
m∑

k=1

P(X0 = k)pkj =
m∑

k=1

πkpkj = πj ,

where the last equality follows from part (b) of the steady-state convergence
theorem. Similarly, we obtain P(Xn = j) = πj , for all n and j. Thus, if the
initial state is chosen according to the stationary distribution, all subsequent
states will have the same distribution.

The equations

πj =
m∑

k=1

πkpkj , j = 1, . . . , m,

are called the balance equations. They are a simple consequence of part (a)
of the theorem and the Chapman-Kolmogorov equation. Indeed, once the con-
vergence of rij(n) to some πj is taken for granted, we can consider the equation,

rij(n) =
m∑

k=1

rik(n − 1)pkj ,
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take the limit of both sides as n → ∞, and recover the balance equations.† The
balance equations are a linear system of equations that, together with

∑m
k=1 πk =

1, can be solved to obtain the πj . The following examples illustrate the solution
process.

Example 6.4. Consider a two-state Markov chain with transition probabilities

p11 = 0.8, p12 = 0.2,

p21 = 0.6, p22 = 0.4.

[This is the same as the chain of Example 6.1 (cf. Fig. 6.1).] The balance equations
take the form

π1 = π1p11 + π2p21, π2 = π1p12 + π2p22,

or
π1 = 0.8 · π1 + 0.6 · π2, π2 = 0.2 · π1 + 0.4 · π2.

Note that the above two equations are dependent, since they are both equivalent
to

π1 = 3π2.

This is a generic property, and in fact it can be shown that one of the balance equa-
tions depends on the remaining equations (see the theoretical problems). However,
we know that the πj satisfy the normalization equation

π1 + π2 = 1,

which supplements the balance equations and suffices to determine the πj uniquely.
Indeed, by substituting the equation π1 = 3π2 into the equation π1 + π2 = 1, we
obtain 3π2 + π2 = 1, or

π2 = 0.25,

which using the equation π1 + π2 = 1, yields

π1 = 0.75.

This is consistent with what we found earlier by iterating the Chapman-Kolmogorov
equation (cf. Fig. 6.4).

Example 6.5. An absent-minded professor has two umbrellas that she uses when
commuting from home to office and back. If it rains and an umbrella is available in

† According to a famous and important theorem from linear algebra (called the
Perron-Frobenius theorem), the balance equations always have a nonnegative solution,
for any Markov chain. What is special about a chain that has a single recurrent class,
which is aperiodic, is that the solution is unique and is also equal to the limit of the
n-step transition probabilities rij(n).
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her location, she takes it. If it is not raining, she always forgets to take an umbrella.
Suppose that it rains with probability p each time she commutes, independently of
other times. What is the steady-state probability that she gets wet on a given day?

We model this problem using a Markov chain with the following states:

State i: i umbrellas are available in her current location, i = 0, 1, 2.

The transition probability graph is given in Fig. 6.9, and the transition probability
matrix is [

0 0 1
0 1 − p p

1 − p p 0

]
.

The chain has a single recurrent class that is aperiodic (assuming 0 < p < 1), so
the steady-state convergence theorem applies. The balance equations are

π0 = (1 − p)π2, π1 = (1 − p)π1 + pπ2, π2 = π0 + pπ1.

From the second equation, we obtain π1 = π2, which together with the first equation
π0 = (1 − p)π2 and the normalization equation π0 + π1 + π2 = 1, yields

π0 =
1 − p

3 − p
, π1 =

1

3 − p
, π2 =

1

3 − p
.

According to the steady-state convergence theorem, the steady-state probability
that the professor finds herself in a place without an umbrella is π0. The steady-
state probability that she gets wet is π0 times the probability of rain p.

120

1

1 - p

1 - p
p

p

No umbrellas Two umbrellas One umbrella

Figure 6.9: Transition probability graph for Example 6.5.

Example 6.6. A superstitious professor works in a circular building with m
doors, where m is odd, and never uses the same door twice in a row. Instead
he uses with probability p (or probability 1 − p) the door that is adjacent in the
clockwise direction (or the counterclockwise direction, respectively) to the door he
used last. What is the probability that a given door will be used on some particular
day far into the future?
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1 2

3

p 1 - p

1 - p

1 - p

1 - p p

p

p

Door 1

Door 3

Door 4

Door 2

5

4

Door 5 1 - p

p

Figure 6.10: Transition probability graph in Example 6.6, for the case of
m = 5 doors.

We introduce a Markov chain with the following m states:

State i: Last door used is door i, i = 1, . . . , m.

The transition probability graph of the chain is given in Fig. 6.10, for the case
m = 5. The transition probability matrix is


0 p 0 0 . . . 0 1 − p

1 − p 0 p 0 . . . 0 0
0 1 − p 0 p . . . 0 0
...

...
...

...
...

...
...

p 0 0 0 . . . 1 − p 0


 .

Assuming that 0 < p < 1, the chain has a single recurrent class that is aperiodic.
[To verify aperiodicity, argue by contradiction: if the class were periodic, there
could be only two subsets of states such that transitions from one subset lead to
the other, since it is possible to return to the starting state in two transitions. Thus,
it cannot be possible to reach a state i from a state j in both an odd and an even
number of transitions. However, if m is odd, this is true for states 1 and m – a
contradiction (for example, see the case where m = 5 in Fig. 6.10, doors 1 and 5 can
be reached from each other in 1 transition and also in 4 transitions).] The balance
equations are

π1 = (1 − p)π2 + pπm,

πi = pπi−1 + (1 − p)πi+1, i = 2, . . . , m − 1,

πm = (1 − p)π1 + pπm−1.

These equations are easily solved once we observe that by symmetry, all doors
should have the same steady-state probability. This suggests the solution

πj =
1

m
, j = 1, . . . , m.
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Indeed, we see that these πj satisfy the balance equations as well as the normal-
ization equation, so they must be the desired steady-state probabilities (by the
uniquenes part of the steady-state convergence theorem).

Note that if either p = 0 or p = 1, the chain still has a single recurrent
class but is periodic. In this case, the n-step transition probabilities rij(n) do not
converge to a limit, because the doors are used in a cyclic order. Similarly, if m is
even, the recurrent class of the chain is periodic, since the states can be grouped
into two subsets, the even and the odd numbered states, such that from each subset
one can only go to the other subset.

Example 6.7. A machine can be either working or broken down on a given day.
If it is working, it will break down in the next day with probability b, and will
continue working with probability 1 − b. If it breaks down on a given day, it will
be repaired and be working in the next day with probability r, and will continue to
be broken down with probability 1 − r. What is the steady-state probability that
the machine is working on a given day?

We introduce a Markov chain with the following two states:

State 1: Machine is working, State 2: Machine is broken down.

The transition probability graph of the chain is given in Fig. 6.11. The transition
probability matrix is [

1 − b b
r 1 − r

]
.

This Markov chain has a single recurrent class that is aperiodic (assuming 0 < b < 1
and 0 < r < 1), and from the balance equations, we obtain

π1 = (1 − b)π1 + rπ2, π2 = bπ1 + (1 − r)π2,

or
bπ1 = rπ2.

This equation together with the normalization equation π1 + π2 = 1, yields the
steady-state probabilities

π1 =
r

b + r
, π2 =

b

b + r
.

1 2

Working Broken

1 - b

r

b

1 - r

Figure 6.11: Transition probability graph for Example 6.7.



Sec. 6.3 Steady-State Behavior 19

The situation considered in the previous example has evidently the Markov
property, i.e., the state of the machine at the next day depends explicitly only on
its state at the present day. However, it is possible to use a Markov chain model
even if there is a dependence on the states at several past days. The general
idea is to introduce some additional states which encode what has happened in
preceding periods. Here is an illustration of this technique.

Example 6.8. Consider a variation of Example 6.7. If the machine remains
broken for a given number of � days, despite the repair efforts, it is replaced by a
new working machine. To model this as a Markov chain, we replace the single state
2, corresponding to a broken down machine, with several states that indicate the
number of days that the machine is broken. These states are

State (2, i): The machine has been broken for i days, i = 1, 2, . . . , �.

The transition probability graph is given in Fig. 6.12 for the case where � = 4.
Again this Markov chain has a single recurrent class that is aperiodic. From the
balance equations, we have

π1 = (1 − b)π1 + r(π(2,1) + · · · + π(2,�−1)) + π(2,�),

π(2,1) = bπ1,

π(2,i) = (1 − r)π(2,i−1), i = 2, . . . , �.

The last two equations can be used to express π(2,i) in terms of π1,

π(2,i) = (1 − r)i−1bπ1, i = 1, . . . , �.

Substituting into the normalization equation π1 +
∑�

i=1
π(2,i) = 1, we obtain

1 =

(
1 + b

�∑
i=1

(1 − r)i−1

)
π1 =

(
1 +

b
(
1 − (1 − r)�

)
r

)
π1,

or
π1 =

r

r + b
(
1 − (1 − r)�

) .

Using the equation π(2,i) = (1 − r)i−1bπ1, we can also obtain explicit formulas for
the π(2,i).

1 2,1

Working Broken

1 - b
r

b
1 - r

2,2 2,3 2,4
1 - r 1 - r

r
r

1

Figure 6.12: Transition probability graph for Example 6.8. A machine that has
remained broken for � = 4 days is replaced by a new, working machine.
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Long-Term Frequency Interpretations

Probabilities are often interpreted as relative frequencies in an infinitely long
string of independent trials. The steady-state probabilities of a Markov chain
admit a similar interpretation, despite the absence of independence.

Consider, for example, a Markov chain involving a machine, which at the
end of any day can be in one of two states, working or broken-down. Each time it
breaks down, it is immediately repaired at a cost of $1. How are we to model the
long-term expected cost of repair per day? One possibility is to view it as the
expected value of the repair cost on a randomly chosen day far into the future;
this is just the steady-state probability of the broken down state. Alternatively,
we can calculate the total expected repair cost in n days, where n is very large,
and divide it by n. Intuition suggests that these two methods of calculation
should give the same result. Theory supports this intuition, and in general we
have the following interpretation of steady-state probabilities (a justification is
given in the theoretical problems section).

Steady-State Probabilities as Expected State Frequencies

For a Markov chain with a single class that is aperiodic, the steady-state
probabilities πj satisfy

πj = lim
n→∞

vij(n)
n

,

where vij(n) is the expected value of the number of visits to state j within
the first n transitions, starting from state i.

Based on this interpretation, πj is the long-term expected fraction of time
that the state is equal to j. Each time that state j is visited, there is probability
pjk that the next transition takes us to state k. We conclude that πjpjk can
be viewed as the long-term expected fraction of transitions that move the state
from j to k.†

† In fact, some stronger statements are also true. Namely, whenever we carry
out the probabilistic experiment and generate a trajectory of the Markov chain over
an infinite time horizon, the observed long-term frequency with which state j is visited
will be exactly equal to πj , and the observed long-term frequency of transitions from
j to k will be exactly equal to πjpjk. Even though the trajectory is random, these
equalities hold with certainty, that is, with probability 1. The exact meaning of this
statement will become more apparent in the next chapter, when we discuss concepts
related to the limiting behavior of random processes.



Sec. 6.3 Steady-State Behavior 21

Expected Frequency of a Particular Transition

Consider n transitions of a Markov chain with a single class that is aperiodic,
starting from a given initial state. Let qjk(n) be the expected number of
such transitions that take the state from j to k. Then, regardless of the
initial state, we have

lim
n→∞

qjk(n)
n

= πjpjk.

The frequency interpretation of πj and πjpjk allows for a simple interpre-
tation of the balance equations. The state is equal to j if and only if there is a
transition that brings the state to j. Thus, the expected frequency πj of visits to
j is equal to the sum of the expected frequencies πkpkj of transitions that lead
to j, and

πj =
m∑

k=1

πkpkj ;

see Fig. 6.13.

1

2

j

m

..
. ..
.

π1p1j

p2j

pmjπm

π2

pj j π j

Figure 6.13: Interpretation of the balance equations in terms of frequencies.
In a very large number of transitions, there will be a fraction πkpkj that bring
the state from k to j. (This also applies to transitions from j to itself, which
occur with frequency πjpjj .) The sum of the frequencies of such transitions is the
frequency πj of being at state j.

Birth-Death Processes

A birth-death process is a Markov chain in which the states are linearly ar-
ranged and transitions can only occur to a neighboring state, or else leave the
state unchanged. They arise in many contexts, especially in queueing theory.
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Figure 6.14 shows the general structure of a birth-death process and also intro-
duces some generic notation for the transition probabilities. In particular,

bi = P(Xn+1 = i + 1 |Xn = i), (“birth” probability at state i),
di = P(Xn+1 = i − 1 |Xn = i), (“death” probability at state i).

. . . m - 1 m

1 - dm

bm-2

0 1

b0

d1

1 - b1 - d11 - b0

b1

d2 dm-1

1 - bm-1  - dm-1

bm-1

dm

Figure 6.14: Transition probability graph for a birth-death process.

For a birth-death process, the balance equations can be substantially sim-
plified. Let us focus on two neighboring states, say, i and i+1. In any trajectory
of the Markov chain, a transition from i to i+1 has to be followed by a transition
from i + 1 to i, before another transition from i to i + 1 can occur. Therefore,
the frequency of transitions from i to i + 1, which is πibi, must be equal to the
frequency of transitions from i + 1 to i, which is πi+1di+1. This leads to the
local balance equations†

πibi = πi+1di+1, i = 0, 1, . . . , m − 1.

Using the local balance equations, we obtain

πi = π0
b0b1 · · · bi−1

d1d2 · · · di
, i = 1, . . . , m.

Together with the normalization equation
∑

i πi = 1, the steady-state probabil-
ities πi are easily computed.

Example 6.9. (Random Walk with Reflecting Barriers) A person walks
along a straight line and, at each time period, takes a step to the right with prob-
ability b, and a step to the left with probability 1 − b. The person starts in one of

† A more formal derivation that does not rely on the frequency interpretation
proceeds as follows. The balance equation at state 0 is π0(1 − b0) + π1d1 = π0, which
yields the first local balance equation π0b0 = π1d1.

The balance equation at state 1 is π0b0 + π1(1 − b1 − d1) + π2d2 = π1. Using
the local balance equation π0b0 = π1d1 at the previous state, this is rewritten as
π1d1 + π1(1 − b1 − d1) + π2d2 = π1, which simplifies to π1b1 = π2d2. We can then
continue similarly to obtain the local balance states at all other states.
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the positions 1, 2, . . . , m, but if he reaches position 0 (or position m+1), his step is
instantly reflected back to position 1 (or position m, respectively). Equivalently, we
may assume that when the person is in positions 1 or m. he will stay in that position
with corresponding probability 1 − b and b, respectively. We introduce a Markov
chain model whose states are the positions 1, . . . , m. The transition probability
graph of the chain is given in Fig. 6.15.

21 . . . m - 1 m

b

1 - b

bb b

1 - b 1 - b 1 - b

1 - b b

Figure 6.15: Transition probability graph for the random walk Example 6.9.

The local balance equations are

πib = πi+1(1 − b), i = 1, . . . , m − 1.

Thus, πi+1 = ρπi, where

ρ =
b

1 − b
,

and we can express all the πj in terms of π1, as

πi = ρi−1π1, i = 1, . . . , m.

Using the normalization equation 1 = π1 + · · · + πm, we obtain

1 = π1(1 + ρ + · · · + ρm−1)

which leads to

πi =
ρi−1

1 + ρ + · · · + ρm−1
, i = 1, . . . , m.

Note that if ρ = 1, then πi = 1/m for all i.

Example 6.10. (Birth-Death Markov Chains – Queueing) Packets arrive
at a node of a communication network, where they are stored in a buffer and then
transmitted. The storage capacity of the buffer is m: if m packets are already
present, any newly arriving packets are discarded. We discretize time in very small
periods, and we assume that in each period, at most one event can happen that
can change the number of packets stored in the node (an arrival of a new packet or
a completion of the transmission of an existing packet). In particular, we assume
that at each period, exactly one of the following occurs:
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(a) one new packet arrives; this happens with a given probability b > 0;

(b) one existing packet completes transmission; this happens with a given prob-
ability d > 0 if there is at least one packet in the node, and with probability
0 otherwise;

(c) no new packet arrives and no existing packet completes transmission; this
happens with a probability 1−b−d if there is at least one packet in the node,
and with probability 1 − b otherwise.

We introduce a Markov chain with states 0, 1, . . . , m, corresponding to the
number of packets in the buffer. The transition probability graph is given in
Fig. 6.16.

The local balance equations are

πib = πi+1d, i = 0, 1, . . . , m − 1.

We define

ρ =
b

d
,

and obtain πi+1 = ρπi, which leads to πi = ρiπ0 for all i. By using the normalization
equation 1 = π0 + π1 + · · · + πm, we obtain

1 = π0(1 + ρ + · · · + ρm),

and

π0 =




1 − ρ

1 − ρm+1
if ρ �= 1,

1

m + 1
if ρ = 1.

The steady-state probabilities are then given by

πi =




ρi(1 − ρ)

1 − ρm+1
if ρ �= 1,

1

m + 1
if ρ = 1,

i = 0, 1, . . . , m.

0 1 . . . m - 1 m

b

d

1 - b - d1 - b 1 - d

bb b

d d d

1 - b - d

Figure 6.16: Transition probability graph in Example 6.10.



Sec. 6.4 Absorption Probabilities and Expected Time to Absorption 25

It is interesting to consider what happens when the buffer size m is so large
that it can be considered as practically infinite. We distinguish two cases.

(a) Suppose that b < d, or ρ < 1. In this case, arrivals of new packets are
less likely than departures of existing packets. This prevents the number
of packets in the buffer from growing, and the steady-state probabilities πi

decrease with i. We observe that as m → ∞, we have 1 − ρm+1 → 1, and

πi → ρi(1 − ρ), for all i.

We can view these as the steady-state probabilities in a system with an infinite
buffer. [As a check, note that we have

∑∞
i=0

ρi(1 − ρ) = 1.]

(b) Suppose that b > d, or ρ > 1. In this case, arrivals of new packets are more
likely than departures of existing packets. The number of packets in the buffer
tends to increase, and the steady-state probabilities πi increase with i. As we
consider larger and larger buffer sizes m, the steady-state probability of any
fixed state i decreases to zero:

πi → 0, for all i.

Were we to consider a system with an infinite buffer, we would have a Markov
chain with a countably infinite number of states. Although we do not have
the machinery to study such chains, the preceding calculation suggests that
every state will have zero steady-state probability and will be “transient.” The
number of packets in queue will generally grow to infinity, and any particular
state will be visited only a finite number of times.

6.4 ABSORPTION PROBABILITIES AND EXPECTED TIME
TO ABSORPTION

In this section, we study the short-term behavior of Markov chains. We first
consider the case where the Markov chain starts at a transient state. We are
interested in the first recurrent state to be entered, as well as in the time until
this happens.

When focusing on such questions, the subsequent behavior of the Markov
chain (after a recurrent state is encountered) is immaterial. We can therefore
assume, without loss of generality, that every recurrent state k is absorbing,
i.e.,

pkk = 1, pkj = 0 for all j �= k.

If there is a unique absorbing state k, its steady-state probability is 1 (because
all other states are transient and have zero steady-state probability), and will be
reached with probability 1, starting from any initial state. If there are multiple
absorbing states, the probability that one of them will be eventually reached is
still 1, but the identity of the absorbing state to be entered is random and the
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associated probabilities may depend on the starting state. In the sequel, we fix a
particular absorbing state, denoted by s, and consider the absorption probability
ai that s is eventually reached, starting from i:

ai = P(Xn eventually becomes equal to the absorbing state s |X0 = i).

Absorption probabilities can be obtained by solving a system of linear equations,
as indicated below.

Absorption Probability Equations

Consider a Markov chain in which each state is either transient or absorbing.
We fix a particular absorbing state s. Then, the probabilities ai of eventually
reaching state s, starting from i, are the unique solution of the equations

as = 1,

ai = 0, for all absorbing i �= s,

ai =
m∑

j=1

pijaj , for all transient i.

The equations as = 1, and ai = 0, for all absorbing i �= s, are evident
from the definitions. To verify the remaining equations, we argue as follows. Let
us consider a transient state i and let A be the event that state s is eventually
reached. We have
ai = P(A |X0 = i)

=
m∑

j=1

P(A |X0 = i, X1 = j)P(X1 = j |X0 = i) (total probability thm.)

=
m∑

j=1

P(A |X1 = j)pij (Markov property)

=
m∑

j=1

ajpij .

The uniqueness property of the solution of the absorption probability equations
requires a separate argument, which is given in the theoretical problems section.

The next example illustrates how we can use the preceding method to
calculate the probability of entering a given recurrent class (rather than a given
absorbing state).

Example 6.11. Consider the Markov chain shown in Fig. 6.17(a). We would
like to calculate the probability that the state eventually enters the recurrent class
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{4, 5} starting from one of the transient states. For the purposes of this problem,
the possible transitions within the recurrent class {4, 5} are immaterial. We can
therefore lump the states in this recurrent class and treat them as a single absorbing
state (call it state 6); see Fig. 6.17(b). It then suffices to compute the probability
of eventually entering state 6 in this new chain.

1

1 2 3 4 51

0.3
0.4

0.2

0.3

0.5

1

0.3 0.7

1 2 3 6

0.3
0.4

0.2

0.8
1

(a)

(b)

0.2

0.1
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Figure 6.17: (a) Transition probability graph in Example 6.11. (b) A new
graph in which states 4 and 5 have been lumped into the absorbing state
s = 6.

The absorption probabilities ai of eventually reaching state s = 6 starting
from state i, satisfy the following equations:

a2 = 0.2a1 + 0.3a2 + 0.4a3 + 0.1a6,

a3 = 0.2a2 + 0.8a6.

Using the facts a1 = 0 and a6 = 1, we obtain

a2 = 0.3a2 + 0.4a3 + 0.1,

a3 = 0.2a2 + 0.8.

This is a system of two equations in the two unknowns a2 and a3, which can be
readily solved to yield a2 = 21/31 and a3 = 29/31.

Example 6.12. (Gambler’s Ruin) A gambler wins $1 at each round, with
probability p, and loses $1, with probability 1 − p. Different rounds are assumed
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independent. The gambler plays continuously until he either accumulates a tar-
get amount of $m, or loses all his money. What is the probability of eventually
accumulating the target amount (winning) or of losing his fortune?

We introduce the Markov chain shown in Fig. 6.18 whose state i represents
the gambler’s wealth at the beginning of a round. The states i = 0 and i = m
correspond to losing and winning, respectively.

All states are transient, except for the winning and losing states which are
absorbing. Thus, the problem amounts to finding the probabilities of absorption
at each one of these two absorbing states. Of course, these absorption probabilities
depend on the initial state i.

0 4

p

31 2

1 - p

p
p

1 - p
1 - p WinLose

Figure 6.18: Transition probability graph for the gambler’s ruin problem
(Example 6.12). Here m = 4.

Let us set s = 0 in which case the absorption probability ai is the probability
of losing, starting from state i. These probabilities satisfy

a0 = 1,

ai = (1 − p)ai−1 + pai+1, i = 1, . . . , m − 1,

am = 0.

These equations can be solved in a variety of ways. It turns out there is an elegant
method that leads to a nice closed form solution.

Let us write the equations for the ai as

(1 − p)(ai−1 − ai) = p(ai − ai+1), i = 1, . . . , m − 1.

Then, by denoting

δi = ai − ai+1, i = 1, . . . , m − 1,

and

ρ =
1 − p

p
,

the equations are written as

δi = ρδi−1, i = 1, . . . , m − 1,

from which we obtain

δi = ρiδ0, i = 1, . . . , m − 1.
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This, together with the equation δ0 + δ1 + · · · + δm−1 = a0 − am = 1, implies that

(1 + ρ + · · · + ρm−1)δ0 = 1.

Thus, we have

δ0 =




1 − ρ

1 − ρm
if ρ �= 1,

1

m
if ρ = 1,

and, more generally,

δi =




ρi(1 − ρ)

1 − ρm
if ρ �= 1,

1

m
if ρ = 1.

From this relation, we can calculate the probabilities ai. If ρ �= 1, we have

ai = a0 − δi−1 − · · · − δ0

= 1 − (ρi−1 + · · · + ρ + 1)δ0

= 1 − 1 − ρi

1 − ρ
· 1 − ρ

1 − ρm
,

= 1 − 1 − ρi

1 − ρm
,

and finally the probability of losing, starting from a fortune i, is

ai =
ρi − ρm

1 − ρm
, i = 1, . . . , m − 1.

If ρ = 1, we similarly obtain

ai =
m − i

m
.

The probability of winning, starting from a fortune i, is the complement 1−ai,
and is equal to

1 − ai =




1 − ρi

1 − ρm if ρ �= 1,

i

m
if ρ = 1.

The solution reveals that if ρ > 1, which corresponds to p < 1/2 and unfa-
vorable odds for the gambler, the probability of losing approaches 1 as m → ∞
regardless of the size of the initial fortune. This suggests that if you aim for a large
profit under unfavorable odds, financial ruin is almost certain.
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Expected Time to Absorption

We now turn our attention to the expected number of steps until a recurrent
state is entered (an event that we refer to as “absorption”), starting from a
particular transient state. For any state i, we denote

µi = E
[
number of transitions until absorption, starting from i

]
= E

[
min{n ≥ 0 |Xn is recurrent}

∣∣ X0 = i
]
.

If i is recurrent, this definition sets µi to zero.
We can derive equations for the µi by using the total expectation theorem.

We argue that the time to absorption starting from a transient state i is equal
to 1 plus the expected time to absorption starting from the next state, which
is j with probability pij . This leads to a system of linear equations which is
stated below. It turns out that these equations have a unique solution, but the
argument for establishing this fact is beyond our scope.

Equations for the Expected Time to Absorption

The expected times µi to absorption, starting from state i are the unique
solution of the equations

µi = 0, for all recurrent states i,

µi = 1 +
m∑

j=1

pijµj , for all transient states i.

Example 6.13. (Spiders and Fly) Consider the spiders-and-fly model of Ex-
ample 6.2. This corresponds to the Markov chain shown in Fig. 6.19. The states
correspond to possible fly positions, and the absorbing states 1 and m correspond
to capture by a spider.

Let us calculate the expected number of steps until the fly is captured. We
have

µ1 = µm = 0,

and

µi = 1 + 0.3 · µi−1 + 0.4 · µi + 0.3 · µi+1, for i = 2, . . . , m − 1.

We can solve these equations in a variety of ways, such as for example by
successive substitution. As an illustration, let m = 4, in which case, the equations
reduce to

µ2 = 1 + 0.4 · µ2 + 0.3 · µ3, µ3 = 1 + 0.3 · µ2 + 0.4 · µ3.
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The first equation yields µ2 = (1/0.6) + (1/2)µ3, which we can substitute in the
second equation and solve for µ3. We obtain µ3 = 10/3 and by substitution again,
µ2 = 10/3.

2 . . . m - 21

0.4 0.4 0.4 0.4

m - 1

0.3 0.3 0.3 0.3

0.3 0.3 0.3

0.3
1 3 m 1

0.3

Figure 6.19: Transition probability graph in Example 6.13.

Mean First Passage Times

The same idea used to calculate the expected time to absorption can be used to
calculate the expected time to reach a particular recurrent state, starting from
any other state. Throughout this subsection, we consider a Markov chain with
a single recurrent class. We focus on a special recurrent state s, and we denote
by ti the mean first passage time from state i to state s, defined by

ti = E
[
number of transitions to reach s for the first time, starting from i

]
= E

[
min{n ≥ 0 |Xn = s}

∣∣ X0 = i
]
.

The transitions out of state s are irrelevant to the calculation of the mean
first passage times. We may thus consider a new Markov chain which is identical
to the original, except that the special state s is converted into an absorbing
state (by setting pss = 1, and psj = 0 for all j �= s). We then compute ti as the
expected number of steps to absorption starting from i, using the formulas given
earlier in this section. We have

ti = 1 +
m∑

j=1

pijtj , for all i �= s,

ts = 0.

This system of linear equations can be solved for the unknowns ti, and is known
to have a unique solution.

The above equations give the expected time to reach the special state s
starting from any other state. We may also want to calculate the mean recur-
rence time of the special state s, which is defined as

t∗s = E[number of transitions up to the first return to s, starting from s]

= E
[
min{n > 1 |Xn = s}

∣∣ X0 = s
]
.
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We can obtain t∗s, once we have the first passage times ti, by using the equation

t∗s = 1 +
m∑

j=1

psjtj .

To justify this equation, we argue that the time to return to s, starting from s,
is equal to 1 plus the expected time to reach s from the next state, which is j
with probability psj . We then apply the total expectation theorem.

Example 6.14. Consider the “up-to-date”–“behind” model of Example 6.1.
States 1 and 2 correspond to being up-to-date and being behind, respectively, and
the transition probabilities are

p11 = 0.8, p12 = 0.2,

p21 = 0.6, p22 = 0.4.

Let us focus on state s = 1 and calculate the mean first passage time to state 1,
starting from state 2. We have t1 = 0 and

t2 = 1 + p21t1 + p22t2 = 1 + 0.4 · t2,
from which

t2 =
1

0.6
=

5

3
.

The mean recurrence time to state 1 is given by

t∗1 = 1 + p11t1 + p12t2 = 1 + 0 + 0.2 · 5

3
=

4

3
.

Summary of Facts About Mean First Passage Times

Consider a Markov chain with a single recurrent class, and let s be a par-
ticular recurrent state.

• The mean first passage times ti to reach state s starting from i, are
the unique solution to the system of equations

ts = 0, ti = 1 +
m∑

j=1

pijtj , for all i �= s.

• The mean recurrence time t∗s of state s is given by

t∗s = 1 +
m∑

j=1

psjtj .
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6.5 MORE GENERAL MARKOV CHAINS

The discrete-time, finite-state Markov chain model that we have considered so
far is the simplest example of an important Markov process. In this section,
we briefly discuss some generalizations that involve either a countably infinite
number of states or a continuous time, or both. A detailed theoretical develop-
ment for these types of models is beyond our scope, so we just discuss their main
underlying ideas, relying primarily on examples.

Chains with Countably Infinite Number of States

Consider a Markov process {X1, X2, . . .} whose state can take any positive inte-
ger value. The transition probabilities

pij = P(Xn+1 = j |Xn = i), i, j = 1, 2, . . .

are given, and can be used to represent the process with a transition probability
graph that has an infinite number of nodes, corresponding to the integers 1, 2, . . .

It is straightforward to verify, using the total probability theorem in a
similar way as in Section 6.1, that the n-step transition probabilities

rij(n) = P(Xn = j |X0 = i), i, j = 1, 2, . . .

satisfy the Chapman-Kolmogorov equations

rij(n + 1) =
∞∑

k=1

rik(n)pkj , i, j = 1, 2, . . .

Furthermore, if the rij(n) converge to steady-state values πj as n → ∞, then by
taking limit in the preceding equation, we obtain

πj =
∞∑

k=1

πkpkj , i, j = 1, 2, . . .

These are the balance equations for a Markov chain with states 1, 2, . . .
It is important to have conditions guaranteeing that the rij(n) indeed con-

verge to steady-state values πj as n → ∞. As we can expect from the finite-state
case, such conditions should include some analog of the requirement that there
is a single recurrent class that is aperiodic. Indeed, we require that:

(a) each state is accessible from every other state;

(b) the set of all states is aperiodic in the sense that there is no d > 1 such
that the states can be grouped in d > 1 disjoint subsets S1, . . . , Sd so that
all transitions from one subset lead to the next subset.
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These conditions are sufficient to guarantee the convergence to a steady-state

lim
n→∞

rij(n) = πj , i, j = 1, 2, . . .

but something peculiar may also happen here, which is not possible if the number
of states is finite: the limits πj may not add to 1, so that (π1, π2, . . .) may not
be a probability distribution. In fact, we can prove the following theorem (the
proof is beyond our scope).

Steady-State Convergence Theorem

Under the above accessibility and aperiodicity assumptions (a) and (b),
there are only two possibilities:

(1) The rij(n) converge to a steady state probability distribution (π1, π2, . . .).
In this case the πj uniquely solve the balance equations together with
the normalization equation π1 + π2 + · · · = 1. Furthermore, the πj

have an expected frequency interpretation:

πj = lim
n→∞

vij(n)
n

,

where vij(n) is the expected number of visits to state j within the first
n transitions, starting from state i.

(2) All the rij(n) converge to 0 as n → ∞ and the balance equations have
no solution, other than πj = 0 for all j.

For an example of possibility (2) above, consider the packet queueing sys-
tem of Example 6.10 for the case where the probability b of a packet arrival in
each period is larger than the probability d of a departure. Then, as we saw
in that example, as the buffer size m increases, the size of the queue will tend
to increase without bound, and the steady-state probability of any one state
will tend to 0 as m → ∞. In effect, with infinite buffer space, the system is
“unstable” when b > d, and all states are “transient.”

An important consequence of the steady-state convergence theorem is that
if we can find a probability distribution (π1, π2, . . .) that solves the balance equa-
tions, then we can be sure that it is the steady-state distribution. This line of
argument is very useful in queueing systems as illustrated in the following two
examples.

Example 6.15. (Queueing with Infinite Buffer Space) Consider, as in Ex-
ample 6.10, a communication node, where packets arrive and are stored in a buffer
before getting transmitted. We assume that the node can store an infinite number
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of packets. We discretize time in very small periods, and we assume that in each
period, one of the following occurs:

(a) one new packet arrives; this happens with a given probability b > 0;

(b) one existing packet completes transmission; this happens with a given prob-
ability d > 0 if there is at least one packet in the node, and with probability
0 otherwise;

(c) no new packet arrives and no existing packet completes transmission; this
happens with a probability 1−b−d if there is at least one packet in the node,
and with probability 1 − b otherwise.

. . . 
b

d

0 1 . . . m - 1 m

b

d
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d d d
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Figure 6.20: Transition probability graph in Example 6.15.

We introduce a Markov chain with states are 0, 1, . . ., corresponding to the
number of packets in the buffer. The transition probability graph is given in
Fig. 6.20. As in the case of a finite number of states, the local balance equations
are

πib = πi+1d, i = 0, 1, . . . ,

and we obtain πi+1 = ρπi, where ρ = b/d. Thus, we have πi = ρiπ0 for all i. If
ρ < 1, the normalization equation 1 =

∑∞
i=0

πi yields

1 = π0

∞∑
i=0

ρi =
π0

1 − ρ
,

in which case π0 = 1 − ρ, and the steady-state probabilities are

πi = ρi(1 − ρ), i = 0, 1, . . .

If ρ ≥ 1, which corresponds to the case where the arrival probability b is no less
than the departure probability d, the normalization equation 1 = π0(1+ρ+ρ2+· · ·)
implies that π0 = 0, and also πi = ρiπ0 = 0 for all i.

Example 6.16. (The M/G/1 Queue) Packets arrive at a node of a communi-
cation network, where they are stored at an infinite capacity buffer and are then
transmitted one at a time. The arrival process of the packets is Poissson with rate
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λ, and the transmission time of a packet has a given CDF. Furthermore, the trans-
mission times of different packets are independent and are also independent from
all the interarrival times of the arrival process.

This queueing system is known as the M/G/1 system. With changes in ter-
minology, it applies to many different practical contexts where “service” is provided
to “arriving customers,” such as in communication, transportation, and manufac-
turing, among others. The name M/G/1 is an example of shorthand terminology
from queueing theory, whereby the first letter (M in this case) characterizes the
customer arrival process (Poisson in this case), the second letter (G in this case)
characterizes the distribution of the service time of the queue (general in this case),
and the number (1 in this case) characterizes the number of customers that can be
simultaneously served.

To model this system as a discrete-time Markov chain, we focus on the time
instants when a packet completes transmission and departs from the system. We
denote by Xn the number of packets in the system just after the nth customer’s
departure. We have

Xn+1 =
{

Xn − 1 + Sn if Xn > 0,
Sn if Xn = 0,

where Sn is the number of packet arrivals during the (n+1)st packet’s transmission.
In view of the Poisson assumption, the random variables S1, S2, . . . are independent
and their PMF can be calculated using the given CDF of the transmission time,
and the fact that in an interval of length r, the number of packet arrivals is Poisson-
distributed with parameter λr. In particular, let us denote

αk = P(Sn = k), k = 0, 1, . . . ,

and let us assume that if the transmission time R of a packet is a discrete random
variable taking the values r1, . . . , rm with probabilities p1, . . . , pm. Then, we have
for all k ≥ 0,

αk =

m∑
j=1

pj
e−λrj (λrj)

k

k!
,

while if R is a continuous random variable with PDF fR(r), we have for all k ≥ 0,

αk =

∫ ∞

r=0

P(Sn = k |R = r)fR(r) dr =

∫ ∞

r=0

e−λr(λr)k

k!
fR(r) dr.

The probabilities αk define in turn the transition probabilities of the Markov chain
{Xn}, as follows (see Fig. 6.21):

pij =

{
αj if i = 0 and j > 0,
αj−i+1 if i > 0 and j ≥ i − 1,
0 otherwise.

Clearly, this Markov chain satisfies the accessibility and aperiodicity condi-
tions that guarantee steady-state convergence. There are two possibilities: either
(π0, π1, . . .) form a probability distribution, or else πj > 0 for all j. We will clarify
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Figure 6.21: Transition probability graph for the number of packets left
behind by a packet completing transmission in the M/G/1 queue (Example
6.16).

the conditions under which each of these cases holds, and we will also calculate the
transform M(s) (when it exists) of the steady-state distribution (π0, π1, . . .):

M(s) =

∞∑
j=0

πje
sj .

For this purpose, we will use the transform of the PMF {αk}:

A(s) =

∞∑
j=0

αje
sj .

Indeed, let us multiply the balance equations

πj = π0αj +

j+1∑
i=1

πiαj−i+1,

with esj and add over all j. We obtain

M(s) =

∞∑
j=0

π0αje
sj +

∞∑
j=0

(
j+1∑
i=1

πiαj−i+1

)
esj

= A(s) +

∞∑
i=1

πie
s(i−1)

∞∑
j=i−1

αj−i+1e
s(j−i+1)

= A(s) +
A(s)

es

∞∑
i=1

πie
si

= A(s) +
A(s)

(
M(s) − π0

)
es

,

or

M(s) =
(es − 1)π0A(s)

es − A(s)
.
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To calculate π0, we take the limit as s → 0 in the above formula, and we use the
fact M(0) = 1 when {πj} is a probability distribution. We obtain, using the fact
A(0) = 1 and L’Hospital’s rule,

1 = lim
s→0

(es − 1)π0A(s)

es − A(s)
=

π0

1−
(
dA(s)/ds

)∣∣
s=0

=
π0

1 − E[N ]
,

where E[N ] =
∑∞

j=0
jαj is the expected value of the number N of packet arrivals

within a packet’s transmission time. Using the iterated expectations formula, we
have

E[N ] = λE[R],

where E[R] is the expected value of the transmission time. Thus,

π0 = 1 − λE[R],

and the transform of the steady-state distribution {πj} is

M(s) =
(es − 1)

(
1 − λE[R]

)
A(s)

es − A(s)
.

For the above calculation to be correct, we must have E[N ] < 1, i.e., packets should
arrive at a rate that is smaller than the transmission rate of the node. If this is not
true, the system is not “stable” and there is no steady-state distribution, i.e., the
only solution of the balance equations is πj = 0 for all j.

Let us finally note that we have introduced the πj as the steady-state prob-
ability that j packets are left behind in the system by a packet upon completing
transmission. However, it turns out that πj is also equal to the steady-state prob-
ability of j packets found in the system by an observer that looks at the system at
a “typical” time far into the future. This is discussed in the theoretical problems,
but to get an idea of the underlying reason, note that for each time the number of
packets in the system increases from n to n + 1 due to an arrival, there will be a
corresponding future decrease from n + 1 to n due to a departure. Therefore, in
the long run, the frequency of transitions from n to n + 1 is equal to the frequency
of transitions from n + 1 to n. Therefore, in steady-state, the system appears
statistically identical to an arriving and to a departing packet. Now, because the
packet interarrival times are independent and exponentially distributed, the times
of packet arrivals are “typical” and do not depend on the number of packets in
the system. With some care this argument can be made precise, and shows that
at the times when packets complete their transmissions and depart, the system is
“typically loaded.”

Continuous-Time Markov Chains

We have implicitly assumed so far that the transitions between states take unit
time. When the time between transitions takes values from a continuous range,
some new questions arise. For example, what is the proportion of time that the
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system spends at a particular state (as opposed to the frequency of visits into
the state)?

Let the states be denoted by 1, 2, . . ., and let us assume that state tran-
sitions occur at discrete times, but the time from one transition to the next is
random. In particular, we assume that:

(a) If the current state is i, the next state will be j with a given probability
pij .

(b) The time interval ∆i between the transition to state i and the transition
to the next state is exponentially distributed with a given parameter νi:

P(∆i ≤ δ | current state is i) ≤ 1 − e−νiδ.

Furthermore, ∆i is independent of earlier transition times and states.

The parameter νi is referred to as the transition rate associated with state
i. Since the expected transition time is

E[∆i] =
∫ ∞

0

δνie−νiδdδ =
1
νi

,

we can interpret νi as the average number of transitions per unit time. We may
also view

qij = pijνi

as the rate at which the process makes a transition to j when at state i. Con-
sequently, we call qij the transition rate from i to j. Note that given the
transition rates qij , one can obtain the node transition rates using the formula
νi =

∑∞
j=1 qij .

The state of the chain at time t ≥ 0 is denoted by X(t), and stays constant
between transitions. Let us recall the memoryless property of the exponential
distribution, which in our context implies that, for any time t between the kth
and (k + 1)st transition times tk and tk+1, the additional time tk+1 − t needed
to effect the next transition is independent of the time t − tk that the system
has been in the current state. This implies the Markov character of the process,
i.e., that at any time t, the future of the process, [the random variables X(t) for
t > t] depend on the past of the process [the values of the random variables X(t)
for t ≤ t] only through the present value of X(t).

Example 6.17. (The M/M/1 Queue) Packets arrive at a node of a communi-
cation network according to a Poissson process with rate λ. The packets are stored
at an infinite capacity buffer and are then transmitted one at a time. The trans-
mission time of a packet is exponentially distributed with parameter µ, and the
transmission times of different packets are independent and are also independent
from all the interarrival times of the arrival process. Thus, this queueing system is
identical to the special case of the M/G/1 system, where the transmission times are
exponentially distributed (this is indicated by the second M inthe M/M/1 name).
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We will model this system using a continuous-time process with state X(t)
equal to the number of packets in the system at time t [if X(t) > 0, then X(t) − 1
packets are waiting in the queue and one packet is under transmission]. The state
increases by one when a new packet arrives and decreases by one when an existing
packet departs. To show that this process is a continuous-time Markov chain, let
us identify the transition rates νi and qij at each state i.

Consider first the case where at some time t, the system becomes empty,
i.e., the state becomes equal to 0. Then the next transition will occur at the next
arrival, which will happen in time that is exponentially distributed with parameter
λ. Thus at state 0, we have the transition rates

q0j =
{

λ if j = 1,
0 otherwise.

Consider next the case of a positive state i, and suppose that a transition oc-
curs at some time t to X(t) = i. If the next transition occurs at time t+∆i, then ∆i

is the minimum of two exponentially distributed random variables: the time to the
next arrival, call it Y, which has parameter λ, and the time to the next departure,
call it Z, which has parameter µ. (We are again using here the memoryless property
of the exponential distribution.) Thus according to Example 5.15, which deals with
“competing exponentials,” the time ∆i is exponentially distributed with parameter
νi = λ + µ. Furthermore, the probability that the next transition corresponds to
an arrival is

P(Y ≤ Z) =

∫
y≤z

λe−λy · µeµz dy dz

= λµ

∫ ∞

0

e−λy

(∫ ∞

y

eµz dz

)
dy

= λµ

∫ ∞

0

e−λy

(
e−µy

µ

)
dy

= λ

∫ ∞

0

e−(λ+µ)y dy

=
λ

λ + µ
.

We thus have for i > 0, qi,i+1 = νiP(Y ≤ Z) = (λ + µ)
(
λ/(λ + µ)

)
= λ. Similarly,

we obtain that the probability that the next transition corresponds to a departure
is µ/(λ + µ), and we have qi,i−1 = νiP(Y ≥ Z) = (λ + µ)

(
µ/(λ + µ)

)
= µ. Thus

qij =

{
λ if j = i + 1,
µ if j = i − 1,
0 otherwise.

The positive transition rates qij are recorded next to the arcs (i, j) of the transition
diagram, as in Fig. 6.22.

We will be interested in chains for which the discrete-time Markov chain
corresponding to the transition probabilities pij satisfies the accessibility and
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Figure 6.22: Transition graph for the M/M/1 queue (Example 6.17).

aperiodicity assumptions of the preceding section. We also require a technical
condition, namely that the number of transitions in any finite length of time
is finite with probability one. Almost all models of practical use satisfy this
condition, although it is possible to construct examples that do not.

Under the preceding conditions, it can be shown that the limit

πj = lim
t→∞

P
(
X(t) = j |X(0) = i

)
exists and is independent of the initial state i. We refer to πj as the steady-state
probability of state j. It can be shown that if Tj(t) is the expected value of the
time spent in state j up to time t, then, regardless of the initial state, we have

πj = lim
t→∞

Tj(t)
t

that is, πj can be viewed as the long-term proportion of time the process spends
in state j.

The balance equations for a continuous-time Markov chain take the form

pj

∞∑
i=0

qji =
∞∑

i=0

piqij , j = 0, 1, . . .

Similar to discrete-time Markov chains, it can be shown that there are two
possibilities:

(1) The steady-state probabilities are all positive and solve uniquely the bal-
ance equations together with the normalization equation π1 +π2 + · · · = 1.

(2) The steady-state probabilities are all zero.

To interpret the balance equations, we note that since πi is the proportion
of time the process spends in state i, it follows that πiqij can be viewed as
frequency of transitions from i to j (expected number of transitions from i to
j per unit time). It is seen therefore that the balance equations express the
intuitive fact that the frequency of transitions out of state j (the left side term
πj

∑∞
i=1 qji) is equal to the frequency of transitions into state j (the right side

term
∑∞

i=0 πiqij).
The continuous-time analog of the local balance equations for discrete-time

chains is
πjqji = πiqij , i, j = 1, 2, . . .
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These equations hold in birth-death systems where qij = 0 for |i − j| > 1, but
need not hold in other types of Markov chains. They express the fact that the
frequencies of transitions from i to j and from j to i are equal.

To understand the relationship between the balance equations for continuous-
time chains and the balance equations for discrete-time chains, consider any
δ > 0, and the discrete-time Markov chain {Zn |n ≥ 0}, where

Zn = X(nδ), n = 0, 1, . . .

The steady-state distribution of {Zn} is clearly {πj | j ≥ 0}, the steady-state
distribution of the continuous chain. The transition probabilities of {Zn |n ≥ 0}
can be derived by using the properties of the exponential distribution. We obtain

pij = δqij + o(δ), i �= j,

pjj = 1 − δ

∞∑
i=0
i �=j

qji + o(δ)

Using these expressions, the balance equations

πj =
∞∑

i=0

πi pij j ≥ 0

for the discrete-time chain {Zn}, we obtain

πj =
∞∑

i=0

πipij = pj

(
1 − δ

∞∑
i=0
i �=j

qji + o(δ)
)

+
∑
i=0
i �=j

pi

(
δqij + o(δ)

)
.

Taking the limit as δ → 0, we obtain the balance equations for the continuous-
time chain.

Example 6.18. (The M/M/1 Queue – Continued) As in the case of a finite
number of states, the local balance equations are

πiλ = πi+1µ, i = 0, 1, . . . ,

and we obtain πi+1 = ρπi, where ρ = λ/µ. Thus, we have πi = ρiπ0 for all i. If
ρ < 1, the normalization equation 1 =

∑∞
i=0

πi yields

1 = π0

∞∑
i=0

ρi =
π0

1 − ρ
,

in which case π0 = 1 − ρ, and the steady-state probabilities are

πi = ρi(1 − ρ), i = 0, 1, . . .
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If ρ ≥ 1, which corresponds to the case where the arrival probability b is no less
than the departure probability d, the normalization equation 1 = π0(1+ρ+ρ2+· · ·)
implies that π0 = 0, and also πi = ρiπ0 = 0 for all i.

Example 6.19. (The M/M/m and M/M/∞ Queues) The M/M/m queueing
system is identical to the M/M/1 system except that m packets can be simul-
taneously transmitted (i.e., the transmission line of the node has m transmission
channels). A packet at the head of the queue is routed to any channel that is
available. The corresponding state transition diagram is shown in Fig. 6.24.
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Figure 6.24: Transition graph for the M/M/m queue (Example 6.19).

By writing down the local balance equations for the steady-state probabilities
πn, we obtain

λπn−1 =
{

nµπn if n ≤ m,
mµπn if n > m.

From these equations, we obtain

πn =




p0
(mρ)n

n!
, n ≤ m

p0
mmρn

m!
, n > m

where ρ is given by

ρ =
λ

mµ
.

Assuming ρ < 1, we can calculate π0 using the above equations and the condition∑∞
n=0

πn = 1. We obtain

π0 =

(
1 +

m−1∑
n=1

(mρ)n

n!
+

∞∑
n=m

(mρ)n

m!

1

mn−m

)−1

and, finally,

π0 =

(
m−1∑
n=0

(mρ)n

n!
+

(mρ)m

m!(1 − ρ)

)−1

.
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In the limiting case where m = ∞ in the M/M/m system (which is called
the M/M/∞ system), the local balance equations become

λπn−1 = nµπn, n = 1, 2, . . .

so

πn = π0

(
λ

µ

)n
1

n!
, n = 1, 2, . . .

From the condition
∑∞

n=0
πn = 1, we obtain

π0 =

(
1 +

∞∑
n=1

(
λ

µ

)n
1

n!

)−1

= e−λ/µ,

so, finally,

πn =

(
λ

µ

)n
e−λ/µ

n!
, n = 0, 1, . . .

Therefore, in steady-state, the number in the system is Poisson distributed with
parameter λ/µ.


