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Consider a sequence X1, X2, . . . of independent identically distributed random
variables with mean µ and variance σ2. Let

Sn = X1 + · · · + Xn

be the sum of the first n of them. Limit theorems are mostly concerned with the
properties of Sn and related random variables, as n becomes very large.

Because of independence, we have

var(Sn) = var(X1) + · · · + var(Xn) = nσ2.

Thus, the distribution of Sn spreads out as n increases, and does not have a
meaningful limit. The situation is different if we consider the sample mean

Mn =
X1 + · · · + Xn

n
=

Sn

n
.

A quick calculation yields

E[Mn] = µ, var(Mn) =
σ2

n
.

In particular, the variance of Mn decreases to zero as n increases, and the bulk of
its distribution must be very close to the mean µ. This phenomenon is the subject
of certain laws of large numbers, which generally assert that the sample mean
Mn (a random variable) converges to the true mean µ (a number), in a precise
sense. These laws provide a mathematical basis for the loose interpretation of an
expectation E[X] = µ as the average of a large number of independent samples
drawn from the distribution of X.

We will also consider a quantity which is intermediate between Sn and Mn.
We first subtract nµ from Sn, to obtain the zero-mean random variable Sn −nµ
and then divide by σ

√
n, to obtain

Zn =
Sn − nµ

σ
√

n
.

It can be verified (see Section 7.4) that

E[Zn] = 0, var(Zn) = 1.

Since the mean and the variance of Zn remain unchanged as n increases, its
distribution neither spreads, nor shrinks to a point. The central limit theorem
is concerned with the asymptotic shape of the distribution of Zn and asserts that
it becomes the standard normal distribution.

Limit theorems are useful for several reasons:

(a) Conceptually, they provide an interpretation of expectations (as well as
probabilities) in terms of a long sequence of identical independent experi-
ments.

(b) They allow for an approximate analysis of the properties of random vari-
ables such as Sn. This is to be contrasted with an exact analysis which
would require a formula for the PMF or PDF of Sn, a complicated and
tedious task when n is large.
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7.1 SOME USEFUL INEQUALITIES

In this section, we derive some important inequalities. These inequalities use the
mean, and possibly the variance, of a random variable to draw conclusions on
the probabilities of certain events. They are primarily useful in situations where
the mean and variance of a random variable X are easily computable, but the
distribution of X is either unavailable or hard to calculate.

We first present the Markov inequality. Loosely speaking it asserts that
if a nonnegative random variable has a small mean, then the probability that it
takes a large value must also be small.

Markov Inequality

If a random variable X can only take nonnegative values, then

P(X ≥ a) ≤ E[X]
a

, for all a > 0.

To justify the Markov inequality, let us fix a positive number a and consider
the random variable Ya defined by

Ya =
{

0, if X < a,
a, if X ≥ a.

It is seen that the relation
Ya ≤ X

always holds and therefore,
E[Ya] ≤ E[X].

On the other hand,

E[Ya] = aP(Ya = a) = aP(X ≥ a),

from which we obtain
aP(X ≥ a) ≤ E[X].

Example 7.1. Let X be uniformly distributed on the interval [0, 4] and note that
E[X] = 2. Then, the Markov inequality asserts that

P(X ≥ 2) ≤ 2

2
= 1, P(X ≥ 3) ≤ 2

3
= 0.67, P(X ≥ 4) ≤ 2

4
= 0.5.
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By comparing with the exact probabilities

P(X ≥ 2) = 0.5, P(X ≥ 3) = 0.25, P(X ≥ 4) = 0,

we see that the bounds provided by the Markov inequality can be quite loose.

We continue with the Chebyshev inequality. Loosely speaking, it asserts
that if the variance of a random variable is small, then the probability that it
takes a value far from its mean is also small. Note that the Chebyshev inequality
does not require the random variable to be nonnegative.

Chebyshev Inequality

If X is a random variable with mean µ and variance σ2, then

P
(
|X − µ| ≥ c

)
≤ σ2

c2
, for all c > 0.

To justify the Chebyshev inequality, we consider the nonnegative random
variable (X − µ)2 and apply the Markov inequality with a = c2. We obtain

P
(
(X − µ)2 ≥ c2

)
≤ E

[
(X − µ)2

]
c2

=
σ2

c2
.

The derivation is completed by observing that the event (X−µ)2 ≥ c2 is identical
to the event |X − µ| ≥ c and

P
(
|X − µ| ≥ c

)
= P

(
(X − µ)2 ≥ c2

)
≤ σ2

c2
.

An alternative form of the Chebyshev inequality is obtained by letting
c = kσ, where k is positive, which yields

P
(
|X − µ| ≥ kσ

)
≤ σ2

k2σ2
=

1
k2

.

Thus, the probability that a random variable takes a value more than k standard
deviations away from its mean is at most 1/k2.

The Chebyshev inequality is generally more powerful than the Markov in-
equality (the bounds that it provides are more accurate), because it also makes
use of information on the variance of X. Still, the mean and the variance of
a random variable are only a rough summary of the properties of its distribu-
tion, and we cannot expect the bounds to be close approximations of the exact
probabilities.
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Example 7.2. As in Example 7.1, let X be uniformly distributed on [0, 4]. Let
us use the Chebyshev inequality to bound the probability that |X − 2| ≥ 1. We
have σ2 = 16/12 = 4/3, and

P
(
|X − 2| ≥ 1

)
≤ 4

3
,

which is not particularly informative.
For another example, let X be exponentially distributed with parameter λ =

1, so that E[X] = var(X) = 1. For c > 1, using Chebyshev’s inequality, we obtain

P(X ≥ c) = P(X − 1 ≥ c − 1) ≤ P
(
|X − 1| ≥ c − 1) ≤ 1

(c − 1)2
.

This is again conservative compared to the exact answer P(X ≥ c) = e−c.

7.2 THE WEAK LAW OF LARGE NUMBERS

The weak law of large numbers asserts that the sample mean of a large number
of independent identically distributed random variables is very close to the true
mean, with high probability.

As in the introduction to this chapter, we consider a sequence X1, X2, . . . of
independent identically distributed random variables with mean µ and variance
σ2, and define the sample mean by

Mn =
X1 + · · · + Xn

n
.

We have

E[Mn] =
E[X1] + · · · + E[Xn]

n
=

nµ

n
= µ,

and, using independence,

var(Mn) =
var(X1 + · · · + Xn)

n2
=

var(X1) + · · · + var(Xn)
n2

=
nσ2

n2
=

σ2

n
.

We apply Chebyshev’s inequality and obtain

P
(
|Mn − µ| ≥ ε

)
≤ σ2

nε2
, for any ε > 0.

We observe that for any fixed ε > 0, the right-hand side of this inequality goes to
zero as n increases. As a consequence, we obtain the weak law of large numbers,
which is stated below. It turns out that this law remains true even if the Xi
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have infinite variance, but a much more elaborate argument is needed, which we
omit. The only assumption needed is that E[Xi] is well-defined and finite.

The Weak Law of Large Numbers (WLLN)

Let X1, X2, . . . be independent identically distributed random variables with
mean µ. For every ε > 0, we have

P
(
|Mn − µ| ≥ ε

)
= P

(∣∣∣∣X1 + · · · + Xn

n
− µ

∣∣∣∣ ≥ ε

)
→ 0, as n → ∞.

The WLLN states that for large n, the “bulk” of the distribution of Mn is
concentrated near µ. That is, if we consider a positive length interval [µ−ε, µ+ε]
around µ, then there is high probability that Mn will fall in that interval; as
n → ∞, this probability converges to 1. Of course, if ε is very small, we may
have to wait longer (i.e., need a larger value of n) before we can assert that Mn

is highly likely to fall in that interval.

Example 7.3. Probabilities and Frequencies. Consider an event A defined
in the context of some probabilistic experiment. Let p = P(A) be the probability of
that event. We consider n independent repetitions of the experiment, and let Mn

be the fraction of time that event A occurred; in this context, Mn is often called
the empirical frequency of A. Note that

Mn =
X1 + · · · + Xn

n
,

where Xi is 1 whenever A occurs, and 0 otherwise; in particular, E[Xi] = p. The
weak law applies and shows that when n is large, the empirical frequency is most
likely to be within ε of p. Loosely speaking, this allows us to say that empirical fre-
quencies are faithful estimates of p. Alternatively, this is a step towards interpreting
the probability p as the frequency of occurrence of A.

Example 7.4. Polling. Let p be the fraction of voters who support a particular
candidate for office. We interview n “randomly selected” voters and record the
fraction Mn of them that support the candidate. We view Mn as our estimate of p
and would like to investigate its properties.

We interpret “randomly selected” to mean that the n voters are chosen in-
dependently and uniformly from the given population. Thus, the reply of each
person interviewed can be viewed as an independent Bernoulli trial Xi with success
probability p and variance σ2 = p(1 − p). The Chebyshev inequality yields

P
(
|Mn − p| ≥ ε

)
≤ p(1 − p)

nε2
.



Sec. 7.3 Convergence in Probability 7

The true value of the parameter p is assumed to be unknown. On the other hand,
it is easily verified that p(1 − p) ≤ 1/4, which yields

P
(
|Mn − p| ≥ ε

)
≤ 1

4nε2
.

For example, if ε = 0.1 and n = 100, we obtain

P
(
|M100 − p| ≥ 0.1

)
≤ 1

4 · 100 · (0.1)2
= 0.25.

In words, with a sample size of n = 100, the probability that our estimate is wrong
by more than 0.1 is no larger than 0.25.

Suppose now that we impose some tight specifications on our poll. We would
like to have high confidence (probability at least 95%) that our estimate will be
very accurate (within .01 of p). How many voters should be sampled?

The only guarantee that we have at this point is the inequality

P
(
|Mn − p| ≥ 0.01

)
≤ 1

4n(0.01)2
.

We will be sure to satisfy the above specifications if we choose n large enough so
that

1

4n(0.01)2
≤ 1 − 0.95 = 0.05,

which yields n ≥ 50, 000. This choice of n has the specified properties but is actually
fairly conservative, because it is based on the rather loose Chebyshev inequality. A
refinement will be considered in Section 7.4.

7.3 CONVERGENCE IN PROBABILITY

We can interpret the WLLN as stating that “Mn converges to µ.” However,
since M1, M2, . . . is a sequence of random variables, not a sequence of numbers,
the meaning of convergence has to be made precise. A particular definition
is provided below. To facilitate the comparison with the ordinary notion of
convergence, we also include the definition of the latter.

Convergence of a Deterministic Sequence

Let a1, a2, . . . be a sequence of real numbers, and let a be another real
number. We say that the sequence an converges to a, or limn→∞ an = a, if
for every ε > 0 there exists some n0 such that

|an − a| ≤ ε, for all n ≥ n0.
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Intuitively, for any given accuracy level ε, an must be within ε of a, when
n is large enough.

Convergence in Probability

Let Y1, Y2, . . . be a sequence of random variables (not necessarily indepen-
dent), and let a be a real number. We say that the sequence Yn converges
to a in probability, if for every ε > 0, we have

lim
n→∞

P
(
|Yn − a| ≥ ε

)
= 0.

Given this definition, the WLLN simply says that the sample mean con-
verges in probability to the true mean µ.

If the random variables Y1, Y2, . . . have a PMF or a PDF and converge in
probability to a, then according to the above definition, “almost all” of the PMF
or PDF of Yn is concentrated to within a an ε-interval around a for large values
of n. It is also instructive to rephrase the above definition as follows: for every
ε > 0, and for every δ > 0, there exists some n0 such that

P
(
|Yn − a| ≥ ε

)
≤ δ, for all n ≥ n0.

If we refer to ε as the accuracy level, and δ as the confidence level, the definition
takes the following intuitive form: for any given level of accuracy and confidence,
Yn will be equal to a, within these levels of accuracy and confidence, provided
that n is large enough.

Example 7.5. Consider a sequence of independent random variables Xn that are
uniformly distributed over the interval [0, 1], and let

Yn = min{X1, . . . , Xn}.

The sequence of values of Yn cannot increase as n increases, and it will occasionally
decrease (when a value of Xn that is smaller than the preceding values is obtained).
Thus, we intuitively expect that Yn converges to zero. Indeed, for ε > 0, we have
using the independence of the Xn,

P
(
|Yn − 0| ≥ ε

)
= P(X1 ≥ ε, . . . , Xn ≥ ε)

= P(X1 ≥ ε) · · ·P(Xn ≥ ε)

= (1 − ε)n.

Since this is true for every ε > 0, we conclude that Yn converges to zero, in proba-
bility.
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Example 7.6. Let Y be an exponentially distributed random variable with
parameter λ = 1. For any positive integer n, let Yn = Y/n. (Note that these
random variables are dependent.) We wish to investigate whether the sequence Yn

converges to zero.
For ε > 0, we have

P
(
|Yn − 0| ≥ ε

)
= P(Yn ≥ ε) = P(Y ≥ nε) = e−nε.

In particular,
lim

n→∞
P

(
|Yn − 0| ≥ ε

)
= lim

n→∞
e−nε = 0.

Since this is the case for every ε > 0, Yn converges to zero, in probability.

One might be tempted to believe that if a sequence Yn converges to a
number a, then E[Yn] must also converge to a. The following example shows
that this need not be the case.

Example 7.7. Consider a sequence of discrete random variables Yn with the
following distribution:

P(Yn = y) =




1 − 1

n
, for y = 0,

1

n
, for y = n2,

0, elsewhere.

For every ε > 0, we have

lim
n→∞

P
(
|Yn| ≥ ε

)
= lim

n→∞

1

n
= 0,

and Yn converges to zero in probability. On the other hand, E[Yn] = n2/n = n,
which goes to infinity as n increases.

7.4 THE CENTRAL LIMIT THEOREM

According to the weak law of large numbers, the distribution of the sample
mean Mn is increasingly concentrated in the near vicinity of the true mean µ.
In particular, its variance tends to zero. On the other hand, the variance of the
sum Sn = X1 + · · · + Xn = nMn increases to infinity, and the distribution of
Sn cannot be said to converge to anything meaningful. An intermediate view
is obtained by considering the deviation Sn − nµ of Sn from its mean nµ, and
scaling it by a factor proportional to 1/

√
n. What is special about this particular

scaling is that it keeps the variance at a constant level. The central limit theorem
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asserts that the distribution of this scaled random variable approaches a normal
distribution.

More specifically, let X1, X2, . . . be a sequence of independent identically
distributed random variables with mean µ and variance σ2. We define

Zn =
Sn − nµ

σ
√

n
=

X1 + · · · + Xn − nµ

σ
√

n
.

An easy calculation yields

E[Zn] =
E[X1 + · · · + Xn] − nµ

σ
√

n
= 0,

and

var(Zn) =
var(X1 + · · · + Xn)

σ2n
=

var(X1) + · · · + var(Xn)
σ2n

=
nσ2

nσ2
= 1.

The Central Limit Theorem

Let X1, X2, . . . be a sequence of independent identically distributed random
variables with common mean µ and variance σ2, and define

Zn =
X1 + · · · + Xn − nµ

σ
√

n
.

Then, the CDF of Zn converges to the standard normal CDF

Φ(z) =
1√
2π

∫ z

−∞
e−x2/2 dx,

in the sense that

lim
n→∞

P(Zn ≤ z) = Φ(z), for every z.

The central limit theorem is surprisingly general. Besides independence,
and the implicit assumption that the mean and variance are well-defined and
finite, it places no other requirement on the distribution of the Xi, which could be
discrete, continuous, or mixed random variables. It is of tremendous importance
for several reasons, both conceptual, as well as practical. On the conceptual side,
it indicates that the sum of a large number of independent random variables
is approximately normal. As such, it applies to many situations in which a
random effect is the sum of a large number of small but independent random
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factors. Noise in many natural or engineered systems has this property. In a wide
array of contexts, it has been found empirically that the statistics of noise are
well-described by normal distributions, and the central limit theorem provides a
convincing explanation for this phenomenon.

On the practical side, the central limit theorem eliminates the need for
detailed probabilistic models and for tedious manipulations of PMFs and PDFs.
Rather, it allows the calculation of certain probabilities by simply referring to the
normal CDF table. Furthermore, these calculations only require the knowledge
of means and variances.

Approximations Based on the Central Limit Theorem

The central limit theorem allows us to calculate probabilities related to Zn as
if Zn were normal. Since normality is preserved under linear transformations,
this is equivalent to treating Sn as a normal random variable with mean nµ and
variance nσ2.

Normal Approximation Based on the Central Limit Theorem

Let Sn = X1 + · · · + Xn, where the Xi are independent identically dis-
tributed random variables with mean µ and variance σ2. If n is large, the
probability P(Sn ≤ c) can be approximated by treating Sn as if it were
normal, according to the following procedure.

1. Calculate the mean nµ and the variance nσ2 of Sn.

2. Calculate the normalized value z = (c − nµ)/σ
√

n.

3. Use the approximation

P(Sn ≤ c) ≈ Φ(z),

where Φ(z) is available from standard normal CDF tables.

Example 7.8. We load on a plane 100 packages whose weights are independent
random variables that are uniformly distributed between 5 and 50 pounds. What is
the probability that the total weight will exceed 3000 pounds? It is not easy to cal-
culate the CDF of the total weight and the desired probability, but an approximate
answer can be quickly obtained using the central limit theorem.

We want to calculate P(S100 > 3000), where S100 is the sum of the 100
packages. The mean and the variance of the weight of a single package are

µ =
5 + 50

2
= 27.5, σ2 =

(50 − 5)2

12
= 168.75,
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based on the formulas for the mean and variance of the uniform PDF. We thus
calculate the normalized value

z =
3000 − 100 · 27.5√

168.75 · 100
=

250

129.9
= 1.92,

and use the standard normal tables to obtain the approximation

P(S100 ≤ 3000) ≈ Φ(1.92) = 0.9726.

Thus the desired probability is

P(S100 > 3000) = 1 − P(S100 ≤ 3000) ≈ 1 − 0.9726 = 0.0274.

Example 7.9. A machine processes parts, one at a time. The processing times
of different parts are independent random variables, uniformly distributed on [1, 5].
We wish to approximate the probability that the number of parts processed within
320 time units is at least 100.

Let us call N320 this number. We want to calculate P(N320 ≥ 100). There is
no obvious way of expressing the random variable N320 as the sum of independent
random variables, but we can proceed differently. Let Xi be the processing time
of the ith part, and let S100 = X1 + · · · + X100 be the total processing time of the
first 100 parts. The event {N320 ≥ 100} is the same as the event {S100 ≤ 320},
and we can now use a normal approximation to the distribution of S100. Note that
µ = E[Xi] = 3 and σ2 = var(Xi) = 16/12 = 4/3. We calculate the normalized
value

z =
320 − nµ

σ
√

n
=

320 − 300√
100 · 4/3

= 1.73,

and use the approximation

P(S100 ≤ 320) ≈ Φ(1.73) = 0.9582.

If the variance of the Xi is unknown, but an upper bound is available,
the normal approximation can be used to obtain bounds on the probabilities of
interest.

Example 7.10. Let us revisit the polling problem in Example 7.4. We poll n
voters and record the fraction Mn of those polled who are in favor of a particular
candidate. If p is the fraction of the entire voter population that supports this
candidate, then

Mn =
X1 + · · · + Xn

n
,

where the Xi are independent Bernoulli random variables with parameter p. In
particular, Mn has mean p and variance p(1− p)/n. By the normal approximation,
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X1 + · · · + Xn is approximately normal, and therefore Mn is also approximately
normal.

We are interested in the probability P
(
|Mn − p| ≥ ε

)
that the polling error is

larger than some desired accuracy ε. Because of the symmetry of the normal PDF
around the mean, we have

P
(
|Mn − p| ≥ ε

)
≈ 2P(Mn − p ≥ ε).

The variance p(1−p)/n of Mn−p depends on p and is therefore unknown. We note
that the probability of a large deviation from the mean increases with the variance.
Thus, we can obtain an upper bound on P

(
Mn − p ≥ ε

)
by assuming that Mn − p

has the largest possible variance, namely, 1/4n. To calculate this upper bound, we
evaluate the standardized value

z =
ε

1/(2
√

n)
,

and use the normal approximation

P
(
Mn − p ≥ ε

)
≤ 1 − Φ(z) = 1 − Φ

(
2ε
√

n
)
.

For instance, consider the case where n = 100 and ε = 0.1. Assuming the
worst-case variance, we obtain

P
(
|M100 − p| ≥ 0.1

)
≈ 2P(Mn − p ≥ 0.1)

≤ 2 − 2Φ
(
2 · 0.1 ·

√
100

)
= 2 − 2Φ(2) = 2 − 2 · 0.977 = 0.046.

This is much smaller (more accurate) than the estimate that was obtained in Ex-
ample 7.4 using the Chebyshev inequality.

We now consider a reverse problem. How large a sample size n is needed
if we wish our estimate Mn to be within 0.01 of p with probability at least 0.95?
Assuming again the worst possible variance, we are led to the condition

2 − 2Φ
(
2 · 0.01 ·

√
n
)
≤ 0.05,

or
Φ

(
2 · 0.01 ·

√
n
)
≥ 0.975.

From the normal tables, we see that Φ(1.96) = 0.975, which leads to

2 · 0.01 ·
√

n ≥ 1.96,

or

n ≥ (1.96)2

4 · (0.01)2
= 9604.

This is significantly better than the sample size of 50,000 that we found using
Chebyshev’s inequality.

The normal approximation is increasingly accurate as n tends to infinity,
but in practice we are generally faced with specific and finite values of n. It
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would be useful to know how large an n is needed before the approximation
can be trusted, but there are no simple and general guidelines. Much depends
on whether the distribution of the Xi is close to normal to start with and, in
particular, whether it is symmetric. For example, if the Xi are uniform, then S8

is already very close to normal. But if the Xi are, say, exponential, a significantly
larger n will be needed before the distribution of Sn is close to a normal one.
Furthermore, the normal approximation to P(Sn ≤ c) is generally more faithful
when c is in the vicinity of the mean of Sn.

The De Moivre – Laplace Approximation to the Binomial

A binomial random variable Sn with parameters n and p can be viewed as the
sum of n independent Bernoulli random variables X1, . . . , Xn, with common
parameter p:

Sn = X1 + · · · + Xn.

Recall that

µ = E[Xi] = p, σ =
√

var(Xi) =
√

p(1 − p),

We will now use the approximation suggested by the central limit theorem to
provide an approximation for the probability of the event {k ≤ Sn ≤ �}, where
k and � are given integers. We express the event of interest in terms of a stan-
dardized random variable, using the equivalence

k ≤ Sn ≤ � ⇐⇒ k − np√
np(1 − p)

≤ Sn − np√
np(1 − p)

≤ � − np√
np(1 − p)

.

By the central limit theorem, (Sn − np)/
√

np(1 − p) has approximately a stan-
dard normal distribution, and we obtain

P(k ≤ Sn ≤ �) =P

(
k − np√
np(1 − p)

≤ Sn − np√
np(1 − p)

≤ � − np√
np(1 − p)

)

≈Φ

(
� − np√
np(1 − p)

)
− Φ

(
k − np√
np(1 − p)

)
.

An approximation of this form is equivalent to treating Sn as a normal
random variable with mean np and variance np(1 − p). Figure 7.1 provides an
illustration and indicates that a more accurate approximation may be possible if
we replace k and � by k − 1

2 and � + 1
2 , respectively. The corresponding formula

is given below.
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k l k l

(a) (b)

Figure 7.1: The central limit approximation treats a binomial random variable
Sn as if it were normal with mean np and variance np(1− p). This figure shows a
binomial PMF together with the approximating normal PDF. (a) A first approx-
imation of a binomial probability P(k ≤ Sn ≤ �) is obtained by integrating the
area under the normal PDF from k to �, which is the shaded area in the figure.
(b) With the approach in (a), if we have k = �, the probability P(Sn = k) would
be approximated by zero. A potential remedy would be to use the normal prob-
ability between k − 1

2
and k + 1

2
to approximate P(Sn = k). By extending this

idea, P(k ≤ Sn ≤ �) can be approximated by using the area under the normal
PDF from k − 1

2
to � + 1

2
, which corresponds to the shaded area.

De Moivre – Laplace Approximation to the Binomial

If Sn is a binomial random variable with parameters n and p, n is large, and
k, � are nonnegative integers, then

P(k ≤ Sn ≤ �) ≈ Φ

(
� + 1

2 − np√
np(1 − p)

)
− Φ

(
k − 1

2 − np√
np(1 − p)

)
.

Example 7.11. Let Sn be a binomial random variable with parameters n = 36
and p = 0.5. An exact calculation yields

P(Sn ≤ 21) =

21∑
k=0

(
36

k

)
(0.5)36 = 0.8785.

The central limit approximation, without the above discussed refinement, yields

P(Sn ≤ 21) ≈ Φ

(
21 − np√
np(1 − p)

)
= Φ

(
21 − 18

3

)
= Φ(1) = 0.8413.

Using the proposed refinement, we have

P(Sn ≤ 21) ≈ Φ

(
21.5 − np√
np(1 − p)

)
= Φ

(
21.5 − 18

3

)
= Φ(1.17) = 0.879,
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which is much closer to the exact value.
The de Moivre – Laplace formula also allows us to approximate the probability

of a single value. For example,

P(Sn = 19) ≈ Φ
(

19.5 − 18

3

)
− Φ

(
18.5 − 18

3

)
= 0.6915 − 05675 = 0.124.

This is very close to the exact value which is(
36

19

)
(0.5)36 = 0.1251.

7.5 THE STRONG LAW OF LARGE NUMBERS

The strong law of large numbers is similar to the weak law in that it also deals
with the convergence of the sample mean to the true mean. It is different,
however, because it refers to another type of convergence.

The Strong Law of Large Numbers (SLLN)

Let X1, X2, . . . be a sequence of independent identically distributed random
variables with mean µ. Then, the sequence of sample means Mn = (X1 +
· · · + Xn)/n converges to µ, with probability 1, in the sense that

P
(

lim
n→∞

X1 + · · · + Xn

n
= µ

)
= 1.

In order to interpret the SSLN, we need to go back to our original de-
scription of probabilistic models in terms of sample spaces. The contemplated
experiment is infinitely long and generates experimental values for each one of
the random variables in the sequence X1, X2, . . .. Thus, it is best to think of the
sample space Ω as a set of infinite sequences ω = (x1, x2, . . .) of real numbers:
any such sequence is a possible outcome of the experiment. Let us now define the
subset A of Ω consisting of those sequences (x1, x2, . . .) whose long-term average
is µ, i.e.,

(x1, x2, . . .) ∈ A ⇐⇒ lim
n→∞

x1 + · · · + xn

n
= µ.

The SLLN states that all of the probability is concentrated on this particular
subset of Ω. Equivalently, the collection of outcomes that do not belong to A
(infinite sequences whose long-term average is not µ) has probability zero.
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The difference between the weak and the strong law is subtle and deserves
close scrutiny. The weak law states that the probability P

(
|Mn − µ| ≥ ε

)
of a

significant deviation of Mn from µ goes to zero as n → ∞. Still, for any finite
n, this probability can be positive and it is conceivable that once in a while,
even if infrequently, Mn deviates significantly from µ. The weak law provides
no conclusive information on the number of such deviations, but the strong law
does. According to the strong law, and with probability 1, Mn converges to µ.
This implies that for any given ε > 0, the difference |Mn − µ| will exceed ε only
a finite number of times.

Example 7.12. Probabilities and Frequencies. As in Example 7.3, con-
sider an event A defined in terms of some probabilistic experiment. We consider
a sequence of independent repetitions of the same experiment, and let Mn be the
fraction of the first n trials in which A occurs. The strong law of large numbers
asserts that Mn converges to P(A), with probability 1.

We have often talked intuitively about the probability of an event A as the
frequency with which it occurs in an infinitely long sequence of independent trials.
The strong law backs this intuition and establishes that the long-term frequency
of occurrence of A is indeed equal to P(A), with certainty (the probability of this
happening is 1).

Convergence with Probability 1

The convergence concept behind the strong law is different than the notion em-
ployed in the weak law. We provide here a definition and some discussion of this
new convergence concept.

Convergence with Probability 1

Let Y1, Y2, . . . be a sequence of random variables (not necessarily indepen-
dent) associated with the same probability model. Let c be a real number.
We say that Yn converges to c with probability 1 (or almost surely) if

P
(

lim
n→∞

Yn = c
)

= 1.

Similar to our earlier discussion, the right way of interpreting this type of
convergence is in terms of a sample space consisting of infinite sequences: all
of the probability is concentrated on those sequences that converge to c. This
does not mean that other sequences are impossible, only that they are extremely
unlikely, in the sense that their total probability is zero.
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The example below illustrates the difference between convergence in prob-
ability and convergence with probability 1.

Example 7.13. Consider a discrete-time arrival process. The set of times is
partitioned into consecutive intervals of the form Ik = {2k, 2k + 1, . . . , 2k+1 − 1}.
Note that the length of Ik is 2k, which increases with k. During each interval Ik,
there is exactly one arrival, and all times within an interval are equally likely. The
arrival times within different intervals are assumed to be independent. Let us define
Yn = 1 if there is an arrival at time n, and Yn = 0 if there is no arrival.

We have P(Yn �= 0) = 1/2k, if n ∈ Ik. Note that as n increases, it belongs to
intervals Ik with increasingly large indices k. Consequently,

lim
n→∞

P(Yn �= 0) = lim
k→∞

1

2k
= 0,

and we conclude that Yn converges to 0 in probability. However, when we carry out
the experiment, the total number of arrivals is infinite (one arrival during each
interval Ik). Therefore, Yn is unity for infinitely many values of n, the event
{limn→∞ Yn = 0} has zero probability, and we do not have convergence with prob-
ability 1.

Intuitively, the following is happening. At any given time, there is a small
(and diminishing with n) probability of a substantial deviation from 0 (convergence
in probability). On the other hand, given enough time, a substantial deviation
from 0 is certain to occur, and for this reason, we do not have convergence with
probability 1.

Example 7.14. Let X1, X2, . . . be a sequence of independent random variables
that are uniformly distributed on [0, 1], and let Yn = min{X1, . . . , Xn}. We wish
to show that Yn converges to 0, with probability 1.

In any execution of the experiment, the sequence Yn is nonincreasing, i.e.,
Yn+1 ≤ Yn for all n. Since this sequence is bounded below by zero, it must have a
limit, which we denote by Y . Let us fix some ε > 0. If Y ≥ ε, then Xi ≥ ε for all i,
which implies that

P(Y ≥ ε) ≤ P(X1 ≥ ε, . . . , Xn ≥ ε) = (1 − ε)n.

Since this is true for all n, we must have

P(Y ≥ ε) ≤ lim
n→∞

(1 − ε)n = 0.

This shows that P(Y ≥ ε) = 0, for any positive ε. We conclude that P(Y > 0) = 0,
which implies that P(Y = 0) = 1. Since Y is the limit of Yn, we see that Yn

converges to zero with probability 1.


